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Abstract

Despite Rust’s memory safety guarantees, developers can still in-

troduce security vulnerabilities due to limited security awareness

and training. Assessing the security risks of such vulnerabilities is

challenging, especially when the resulting failures are not directly

observable in the application’s runtime behavior. However, the Rust

ecosystem currently lacks reproducible vulnerability datasets, and

many vulnerability advisories do not provide proof-of-vulnerability

(PoV) examples to demonstrate the issue. As a result, reproduc-

ing vulnerabilities from advisory information alone is technically

difficult and time-consuming, which limits developers’ ability to

recognize and understand security risks in practice.

In this paper, we built RustXec, a comprehensive reproducible

dataset for Rust vulnerabilities. RustXec includes 102 vulnerabili-

ties across 89 open-source Rust projects. It covers eight vulnerability

categories collected from the RustSec security advisory database.

For each vulnerability advisory, RustXec includes a verified PoV

that demonstrates the security flaw as described in the vulnerability

advisories, along with a containerized execution environment to

facilitate the reproduction. This dataset enables developers and

researchers to reliably reproduce vulnerabilities and understand

the security risk in Rust applications.
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1 Introduction

Rust is a programming language designed to ensure memory safety

at compile time through its ownership and borrowing system [5–

7, 17]. Prior work [11, 26] has shown that developers can still intro-

duce security vulnerabilities into Rust systems when using unsafe
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blocks, mismanaging memory, or making logic flaws during the im-

plementation. These vulnerabilities are often invisible to developers
and may remain undetected unless particular runtime conditions

trigger observable failures. As a result, developers frequently strug-

gle to understand how a reported vulnerability can be exploited

and to assess its security implications from vulnerability reports

alone [15]. When overlooked, such vulnerabilities can result in

data corruption, degrade system reliability, and even cause severe

financial losses [12, 13].

Despite the prevalence and potential impact of these vulnerabili-

ties, there is still a lack of vulnerability datasets to help developers

assess security risks in Rust applications. Existing Rust vulnerability

datasets collected in the prior work [8, 10, 14, 16, 19, 20, 23, 24, 27] ei-

ther include non-reproducible vulnerabilities [24, 27] or only cover

a single vulnerability category [8, 10, 14, 16]. For example, Yuga [16]

uses a comparatively small dataset of nine crates from RustSec, and

focuses exclusively on memory-related vulnerabilities. Additionally,

the vulnerability datasets collected by Xu et al. [24] and Zheng et

al. [27] provide general vulnerability descriptions from CVE [2]

or RustSec advisories [21]. They do not include executable test

cases or scripts, so-called proof-of-vulnerabilities (PoVs), which

demonstrate how vulnerabilities can be triggered. The absence of a

reproducible, multi-category vulnerability dataset for runtime ob-

servation makes it challenging to assess security risks and hinders

the adoption of secure coding practices in Rust applications.

Reproducing vulnerabilities in Rust applications is challenging

due to technical complexity and time demands. First, without PoVs,

developers or security practitioners are required to examine the

project source code, identify triggering conditions, and derive con-

crete inputs that satisfy the necessary data and execution path

constraints [25]. Second, observing runtime issues for a given vul-

nerability requires setting up precise runtime environments and

configuring project dependencies for each Rust project. Addition-

ally, developers should verify that the program execution behavior

observed during execution corresponds to the target vulnerability,

which is both labor-intensive and time-consuming.

In this paper, we build RustXec, a vulnerability reproduction

dataset for the Rust open-source ecosystem. RustXec includes 102

reproducible Rust vulnerabilities across eight categories, which

correspond to 89 open-source Rust projects. To build the dataset,

we began by crawling entries from the RustSec security advisory

https://doi.org/10.1145/3793302.3793307
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database [21], a community-maintained platform that tracks vulner-

abilities in crates.io packages. We chose RustSec because it focuses

on open-source Rust crates and serves as the source for GitHub Ad-

visory’s Rust vulnerabilities [3], whereas NVD [4] includes closed-

source applications and kernel code outside our scope. Given the sig-

nificant manual effort required to reproduce vulnerabilities across

different Rust versions, we limited our scope to 2021-2025, which

yielded 515 initial vulnerability entries. From these entries, we first

filtered out 216 entries that are vulnerability-irrelevant. Second,

we extracted PoV candidates and their affected projects from the

advisory references, which include vulnerability descriptions, fix

commits, and discussion in pull requests. We excluded projects

that were not compilable or lacked any PoV candidates, reducing

our dataset to 107 vulnerability entries. Third, we executed each

PoV candidate on the affected project and manually verified the

observed behavior against the vulnerability description in the advi-

sory; we confirmed 102 vulnerabilities with verified PoVs, which

form the final dataset. In order to facilitate the dataset reuse and

reduce environment setup time, we constructed a containerized

environment with a verified PoV for each vulnerability.

In summary, our paper makes the following contributions:

• We build the first real-world dataset that includes 102 repro-

ducible vulnerabilities with verified PoVs, which covers eight

different vulnerability categories in the 89 Rust open-source

projects.

• We provide a ready-to-use containerized environment that

eliminates the complexity of environment configuration, al-

lowing developers to easily reproduce vulnerabilities with-

out manual configuration.

RustXec is available at: https://github.com/ying-selab/RustXec.

2 Methodology

This section introduces the two-stage workflow to build RustXec

(as shown in Figure 1). In the data preparation stage (Section 2.1),

we collect and filter vulnerabilities from RustSec. We then identify

PoV candidates and verify that affected projects are compilable and

runnable. In the vulnerability reproduction stage (Section 2.2), we

apply PoV candidates to affected projects and execute them. Next,

we confirm whether each vulnerability is reproduced by matching

the observed program execution behavior with its vulnerability de-

scription. Finally, we package each reproduced vulnerability as an

artifact, including the project and the PoV that triggers the vulner-

ability as a Docker image, together with the relevant vulnerability

metadata (Section 2.3).

2.1 Data Preparation

Our data preparation process aims to systematically collect: (1)

open-source Rust projects containing known security vulnerabil-

ities. To ensure these projects can be used in the vulnerability

reproduction stage, each project must be compilable in a controlled

environment. (2) PoV candidates that can potentially demonstrate

the vulnerabilities in these Rust projects.

Vulnerability entries collection and filtering.We collect vul-

nerabilities from the RustSec security advisory database [21], as it is

the most comprehensive community-driven vulnerability database

specifically for the Rust ecosystem. RustSec tracks security issues
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Figure 1: Dataset construction workflow for RustXec.

in open-source Rust crates on crates.io, providing structured

information (e.g., affected functions) that supports vulnerability

reproduction and analysis. We choose RustSec over databases like

NVD [4] because RustSec focuses exclusively on open-source Rust

crates, while NVD also includes closed-source software vulnera-

bilities that cannot be reproduced. We collect 515 vulnerabilities

reported between January 2021 and April 2025. RustXec only in-

cludes vulnerabilities after 2021, because the recent Rust compiler

introduced significant improvements that enhanced compile-time

checks, making many pre-2021 vulnerability patterns detectable.

For each advisory, we automatically extract vulnerability informa-

tion including vulnerability category, patched versions, and affected

functions mentioned in the vulnerability description. To ensure

each case in RustXec is vulnerability related, we exclude advi-

sories marked as unmaintained (117 cases) or unsound (89 cases)

and remove duplicate cases that refer to the same underlying issue

(10 cases). After the filtering process, there are 299 cases remaining.

PoV candidates identification. For each advisory, we collect po-

tential PoVs that may demonstrate the existence of vulnerability.

A PoV refers to inputs, test cases, or scripts that can potentially

trigger the vulnerability in the affected project [9]. Our insight is

that PoVs can exist within the following sources: (1) vulnerability

descriptions in RustSec advisories; (2) vulnerability fix commits,

developers may introduce unit tests to validate the patch and con-

firm vulnerability removal; and (3) discussions in GitHub issues

and pull requests for fixes. Therefore, we extracted all potential

PoVs from these sources. In total, we identified 154 PoV candidates

corresponding to 118 RustSec advisories, which included 16 from

RustSec advisory descriptions, 84 from fix commits, and 54 from

GitHub discussions (issues and vulnerability fix pull requests).

Projects with known vulnerability. To collect vulnerability

projects for reproduction, we applied two criteria: 1) the affected

project has PoV candidates, and 2) it must be compilable under the

vulnerable version and configuration described in the vulnerability

entries. We first excluded 181 projects without PoV candidates. We

then cloned the remaining 118 projects from GitHub or GitLab,

checked out commits prior to the fix, and set the Rust version ac-

cordingly. We applied cargo build for each affected project and

resolved dependency issues (such as version conflicts). Since our

reproduction system environment is Ubuntu 24.04, we further ex-

cluded 11 projects that require specific hardware (e.g., ARM archi-

tecture) or OS-specific features (e.g., Windows-only APIs). We also

followed the README file to execute the project and confirmed it

was runnable. For library projects, we only applied cargo build

https://github.com/ying-selab/RustXec
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without running, because they do not have a main function. As

some projects contained multiple vulnerabilities at different ver-

sions, after merging the duplication, we got 94 unique projects

corresponding to 107 vulnerability entries.

2.2 Vulnerability Reproduction

We verify vulnerability reproduction by executing PoV candidates

on their corresponding affected projects. We then manually inspect

the program’s runtime behavior against the vulnerability descrip-

tion to identify the PoV that successfully triggers the vulnerability.

We refer to these confirmed triggering inputs as verified PoVs.
PoV candidates execution.We configure the execution environ-

ment according to different types of PoVs. (1) For unit test PoVs (59

cases), which are specific test functions or code snippets, we execute

them directly using cargo test as part of the project’s unit testing

framework. (2) For script-based PoVs (48 cases) that require inter-

action with a client project or external environment, we manually

construct the environment, configure the dependencies, and execute

them as independent programs. For example, RUSTSEC-2024-0376

describes a remotely exploitable denial-of-service vulnerability in

the Tonic gRPC framework. We set up both server and client com-

ponents in the PoV: the PoV script first starts the Tonic server with

TLS enabled, then launches a client configured with an incorrect

domain name (e.g., “wrong.com” instead of “example.com”).

To provide sufficient information for determining whether a

PoV successfully reproduces the vulnerability, we capture the pro-

gram runtime behavior during the execution. Specifically, we use

the script and top command to record program output, abnor-

mal termination signals, and capture resource consumption (CPU

and memory usage). In addition, we re-run the executable with

rust-gdb independently to extract stack traces.

Reproduction verification. To obtain verified PoVs, we first eval-

uate each candidate by checking whether the program output and

abnormal termination signals match the advisory description. We

further use the recorded stack traces to confirm that the vulner-

able code path is executed and the vulnerability is successfully

triggered. Specifically, for different vulnerability category, we need

extra specific information to validate reproduction. For example,

regarding memory-corruption and memory-exposure vulnerabili-

ties, we examine AddressSanitizer [22] output alongside program

output to confirm detection of memory safety violations (e.g., buffer

overflows, use-after-free); we consider the vulnerability reproduced

if AddressSanitizer reports errors or if the program crashes with

segmentation faults or panics. For denial-of-service vulnerabilities,

reproduction is confirmed if the PoV candidate fails to complete

within the timeout or exhibits abnormal resource consumption,

such as excessive CPU usage or memory exhaustion.

Through this validation process, we successfully reproduced 102

out of 107 vulnerabilities with verified PoVs. The remaining five

cases failed to be reproduced as their advisories lack runtime config-

urations or environmental prerequisites essential for reproduction.

2.3 Vulnerability Artifact Construction

To facilitate reproducibility, each vulnerability entry provides a

containerized execution environment and the associated vulnerabil-

ity metadata. The environment includes a Dockerfile, a pre-built

Docker image, and the following data: (1) the source code of the

affected project with the verified PoV; (2) all vendored Rust depen-

dencies; (3) a Makefile that automates the build and reproduction

process; and (4) example execution outputs demonstrating that the

vulnerability has been triggered. Additionally, we provide metadata

for all cases, such as categories, severity, patched versions, and

affected functions. In summary, the standardized container images

and comprehensive metadata collectively guarantee the accurate

and efficient reproduction of the dataset’s vulnerabilities.

3 Statistics

This section presents key statistics of RustXec to demonstrate the

dataset’s scope and characteristics. We analyze the distribution of

vulnerabilities across different categories and years, examine the

time requirements for vulnerability reproduction, and evaluate PoV

execution performance.

Category distribution. RustXec contains 102 reproducible vul-

nerabilities from 89 distinct Rust projects, spanning eight vulnerabil-

ity categories. Figure 2 illustrates how these vulnerability categories

are distributed from 2021 to 2025. RustXec includes a relatively

higher number of vulnerabilities in 2021 and 2024, with fewer cases

in 2022 and 2023. The highest counts are memory-corruption (20

cases) in 2021 and denial-of-service (13 cases) in 2024. The remain-

ing categories have relatively even distribution across years.
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Figure 2: Distribution of vulnerabilities in RustXec by vul-

nerability category from January 2021 to April 2025.

RustXec contains 62 different Common Weakness Enumeration

(CWE) [1] IDs (as shown in Table 1). We extract CWE IDs from

CVE [2] and GHSA [3] entries and map them to RustSec categories.

For cases without available CWE information, we omit this field.

The most prevalent categories are memory-corruption (31 cases)

and denial-of-service (28 cases), reflecting persistent challenges

in memory safety and resource management. The most frequent

CWEs are CWE-787 (out-of-bounds write; nine cases), CWE-415

(double free; eight cases), and CWE-400 (uncontrolled resource

consumption; seven cases). This breadth supports comprehensive

analyses of vulnerability characteristics across the Rust ecosystem.

Vulnerability reproduction effort.We spent 324 person-hours

verifying and reproducing 102 vulnerabilities in RustXec. The

effort required for reproduction varied substantially across vul-

nerability categories. Specifically, we found that vulnerability in
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Table 1: Distribution of vulnerabilities in RustXec by Rust-

Sec category and corresponding CWE IDs. CWE IDs are ob-

tained from the references in each RustSec advisory.

RustSec Category Corresponding CWE IDs # Cases

code-execution 23, 77, 88 3

crypto-failure 287, 288, 327, 328, 331, 347, 440, 497,

682, 863

10

denial-of-service 20, 130, 228, 232, 240, 248, 392, 400,

401, 476, 617, 670, 674, 754, 755, 770,

824, 835, 1284, 1333

28

format-injection 79, 113, 147, 436, 444, 601 11

memory-corruption 119, 120, 190, 191, 366, 415, 416, 787,

843, 908

31

memory-exposure 125, 126, 212, 226, 459, 590 12

privilege-escalation 22, 59, 269, 284, 668, 706 4

thread-safety 362 3

Total 62 (# Distinct CWE IDs) 102

privilege-escalation and code-execution requiredmore time because

they often depend on specific system configurations and permission

settings. For example, RUSTSEC-2023-0066 is a privilege-escalation

vulnerability in the pleaser crate that abuses the TIOCSTI and TIO-

CLINUX ioctl request codes to inject input into a terminal or trigger

console-level commands. To reproduce it, we need to enable legacy

ioctl support via kernel parameters changes, configure setuid
root permissions, as well as compile a C exploit program to trigger

the privilege escalation. Because each vulnerability can require

substantial manual configuration, we provide reproduction instruc-

tions and a prebuilt Docker image for every vulnerability. Users

can run a single command to reproduce and observe the runtime

consequences.

PoV execution time. Executing the verified PoV to trigger the

vulnerability takes 9.4 seconds on average (as shown in Table 2). Cat-

egories that cause immediate crashes or detectable runtime errors

execute quickly, typically within a few seconds. For example, code-

execution vulnerabilities execute in 0.4 seconds on average because

the PoV triggers immediate, observable effects when executed in the

shell (e.g., RUSTSEC-2024-0350). In contrast, categories requiring

timeout waiting, resource monitoring, or intensive computations

take longer. For example, crypto-failure vulnerabilities take 19.6

seconds on average as they involve computationally expensive cryp-

tographic operations for exploitation (e.g., RUSTSEC-2022-0093).

Table 2: Average PoV execution time by vulnerability cate-

gory in RustXec.

RustSec Category Time (s) RustSec Category Time (s)

code-execution 0.4 memory-corruption 3.5

crypto-failure 19.6 memory-exposure 10.8

denial-of-service 12.0 privilege-escalation 6.5

format-injection 13.8 thread-safety 5.3

Overall 9.4

4 Threats to Validity

Our manual verification of PoV execution may introduce human

bias. To mitigate this risk, we defined explicit reproduction crite-

ria and had multiple authors independently validate the results.

Additionally, we excluded vulnerabilities without available PoV

candidates, which may limit the generalizability of our findings.

Future work could broaden coverage by constructing PoVs based

on information from vulnerability advisories. Moreover, our tool

currently uses Ubuntu 24.04 as Docker image, which will reach

end-of-life in 2029. To address this, we plan to update the Docker

image to newer Ubuntu long time support versions as they become

available, ensuring long-term tool availability.

5 Related Work

Several empirical studies have collected Rust vulnerability datasets

to analyze vulnerability characteristics (e.g., memory bugs [24],

concurrency bugs [19, 20]) and safety requirements for unsafe Rust

programming [11]. While these studies provide valuable insights

into Rust vulnerability patterns, many of them could not ensure the

reproducibility of vulnerabilities. In contrast, our work guarantees

reproducibility by providing a verified PoV along with a container-

ized environment, enabling developers to observe concrete program

execution behavior and understand the real-world security impact.

Prior works have built Rust vulnerability datasets [10, 14, 16]

alongside detection tools to support tool evaluation. TypePulse [10]

identified 26 type confusion bugs from RustSec, which are unde-

fined behaviors caused by unsafe type conversion operations in

Rust. ERASan [14] introduced a dataset of 28 memory bugs to

evaluate their customized address sanitizer tailored for the Rust

environment. While these datasets focus on specific vulnerability

types for evaluating specialized tools, RustXec provides a dataset

covering eight vulnerability categories, enabling cross-category

security analysis and supporting the evaluation of general-purpose

Rust security tools.

There are several reproducible vulnerability datasets [9, 18] con-

structed for other programming languages. Bui et al. [9] constructed

Vul4J, a dataset of 79 reproducible vulnerabilities for Java collected

from Project KB, to support program repair research. Pinconschi

et al. [18] proposed CB-REPAIR, a dataset containing 55 vulnera-

bilities in Linux-based C/C++ programs for evaluating automatic

program repair techniques. Similar to these efforts, our work pro-

vides the first comprehensive reproducible vulnerability dataset for

Rust. This fills a critical gap in Rust security research and advances

secure coding practices in the growing Rust community.

6 Conclusion

This paper introduces RustXec, the first comprehensive repro-

ducible Rust vulnerability dataset for assessing security risks in

Rust applications. RustXec contains 102 vulnerabilities spanning

eight vulnerability categories, each with a verified PoV and detailed

vulnerability information for reproduction and analysis. To facili-

tate easy reuse, RustXec provides containerized environments that

eliminate manual environment setup effort. In the future, we will

leverage RustXec to provide richer evaluation signals for system-

atically analyzing existing Rust vulnerability detection tools and

guide the design of new detection tools.
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