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Abstract

Despite Rust’s memory safety guarantees, developers can still in-
troduce security vulnerabilities due to limited security awareness
and training. Assessing the security risks of such vulnerabilities is
challenging, especially when the resulting failures are not directly
observable in the application’s runtime behavior. However, the Rust
ecosystem currently lacks reproducible vulnerability datasets, and
many vulnerability advisories do not provide proof-of-vulnerability
(PoV) examples to demonstrate the issue. As a result, reproduc-
ing vulnerabilities from advisory information alone is technically
difficult and time-consuming, which limits developers’ ability to
recognize and understand security risks in practice.

In this paper, we built RusTXEc, a comprehensive reproducible
dataset for Rust vulnerabilities. RusTXEc includes 102 vulnerabili-
ties across 89 open-source Rust projects. It covers eight vulnerability
categories collected from the RustSec security advisory database.
For each vulnerability advisory, RusTXEc includes a verified PoV
that demonstrates the security flaw as described in the vulnerability
advisories, along with a containerized execution environment to
facilitate the reproduction. This dataset enables developers and
researchers to reliably reproduce vulnerabilities and understand
the security risk in Rust applications.
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1 Introduction

Rust is a programming language designed to ensure memory safety
at compile time through its ownership and borrowing system [5-
7, 17]. Prior work [11, 26] has shown that developers can still intro-
duce security vulnerabilities into Rust systems when using unsafe
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blocks, mismanaging memory, or making logic flaws during the im-
plementation. These vulnerabilities are often invisible to developers
and may remain undetected unless particular runtime conditions
trigger observable failures. As a result, developers frequently strug-
gle to understand how a reported vulnerability can be exploited
and to assess its security implications from vulnerability reports
alone [15]. When overlooked, such vulnerabilities can result in
data corruption, degrade system reliability, and even cause severe
financial losses [12, 13].

Despite the prevalence and potential impact of these vulnerabili-
ties, there is still a lack of vulnerability datasets to help developers
assess security risks in Rust applications. Existing Rust vulnerability
datasets collected in the prior work [8, 10, 14, 16, 19, 20, 23, 24, 27] ei-
ther include non-reproducible vulnerabilities [24, 27] or only cover
a single vulnerability category [8, 10, 14, 16]. For example, Yuga [16]
uses a comparatively small dataset of nine crates from RustSec, and
focuses exclusively on memory-related vulnerabilities. Additionally,
the vulnerability datasets collected by Xu et al. [24] and Zheng et
al. [27] provide general vulnerability descriptions from CVE [2]
or RustSec advisories [21]. They do not include executable test
cases or scripts, so-called proof-of-vulnerabilities (PoVs), which
demonstrate how vulnerabilities can be triggered. The absence of a
reproducible, multi-category vulnerability dataset for runtime ob-
servation makes it challenging to assess security risks and hinders
the adoption of secure coding practices in Rust applications.

Reproducing vulnerabilities in Rust applications is challenging
due to technical complexity and time demands. First, without PoVs,
developers or security practitioners are required to examine the
project source code, identify triggering conditions, and derive con-
crete inputs that satisfy the necessary data and execution path
constraints [25]. Second, observing runtime issues for a given vul-
nerability requires setting up precise runtime environments and
configuring project dependencies for each Rust project. Addition-
ally, developers should verify that the program execution behavior
observed during execution corresponds to the target vulnerability,
which is both labor-intensive and time-consuming.

In this paper, we build RusTXEc, a vulnerability reproduction
dataset for the Rust open-source ecosystem. RusTXEc includes 102
reproducible Rust vulnerabilities across eight categories, which
correspond to 89 open-source Rust projects. To build the dataset,
we began by crawling entries from the RustSec security advisory
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database [21], a community-maintained platform that tracks vulner-
abilities in crates.io packages. We chose RustSec because it focuses
on open-source Rust crates and serves as the source for GitHub Ad-
visory’s Rust vulnerabilities [3], whereas NVD [4] includes closed-
source applications and kernel code outside our scope. Given the sig-
nificant manual effort required to reproduce vulnerabilities across
different Rust versions, we limited our scope to 2021-2025, which
yielded 515 initial vulnerability entries. From these entries, we first
filtered out 216 entries that are vulnerability-irrelevant. Second,
we extracted PoV candidates and their affected projects from the
advisory references, which include vulnerability descriptions, fix
commits, and discussion in pull requests. We excluded projects
that were not compilable or lacked any PoV candidates, reducing
our dataset to 107 vulnerability entries. Third, we executed each
PoV candidate on the affected project and manually verified the
observed behavior against the vulnerability description in the advi-
sory; we confirmed 102 vulnerabilities with verified PoVs, which
form the final dataset. In order to facilitate the dataset reuse and
reduce environment setup time, we constructed a containerized
environment with a verified PoV for each vulnerability.
In summary, our paper makes the following contributions:

e We build the first real-world dataset that includes 102 repro-
ducible vulnerabilities with verified PoVs, which covers eight
different vulnerability categories in the 89 Rust open-source
projects.

e We provide a ready-to-use containerized environment that
eliminates the complexity of environment configuration, al-
lowing developers to easily reproduce vulnerabilities with-
out manual configuration.

RusTXEC is available at: https://github.com/ying-selab/RustXec.

2 Methodology

This section introduces the two-stage workflow to build RusTXEc
(as shown in Figure 1). In the data preparation stage (Section 2.1),
we collect and filter vulnerabilities from RustSec. We then identify
PoV candidates and verify that affected projects are compilable and
runnable. In the vulnerability reproduction stage (Section 2.2), we
apply PoV candidates to affected projects and execute them. Next,
we confirm whether each vulnerability is reproduced by matching
the observed program execution behavior with its vulnerability de-
scription. Finally, we package each reproduced vulnerability as an
artifact, including the project and the PoV that triggers the vulner-
ability as a Docker image, together with the relevant vulnerability
metadata (Section 2.3).

2.1 Data Preparation

Our data preparation process aims to systematically collect: (1)
open-source Rust projects containing known security vulnerabil-
ities. To ensure these projects can be used in the vulnerability
reproduction stage, each project must be compilable in a controlled
environment. (2) PoV candidates that can potentially demonstrate
the vulnerabilities in these Rust projects.

Vulnerability entries collection and filtering. We collect vul-
nerabilities from the RustSec security advisory database [21], as it is
the most comprehensive community-driven vulnerability database
specifically for the Rust ecosystem. RustSec tracks security issues
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Figure 1: Dataset construction workflow for RustXEc.

in open-source Rust crates on crates.io, providing structured
information (e.g., affected functions) that supports vulnerability
reproduction and analysis. We choose RustSec over databases like
NVD [4] because RustSec focuses exclusively on open-source Rust
crates, while NVD also includes closed-source software vulnera-
bilities that cannot be reproduced. We collect 515 vulnerabilities
reported between January 2021 and April 2025. RusTXEc only in-
cludes vulnerabilities after 2021, because the recent Rust compiler
introduced significant improvements that enhanced compile-time
checks, making many pre-2021 vulnerability patterns detectable.
For each advisory, we automatically extract vulnerability informa-
tion including vulnerability category, patched versions, and affected
functions mentioned in the vulnerability description. To ensure
each case in RusTXEc is vulnerability related, we exclude advi-
sories marked as unmaintained (117 cases) or unsound (89 cases)
and remove duplicate cases that refer to the same underlying issue
(10 cases). After the filtering process, there are 299 cases remaining.
PoV candidates identification. For each advisory, we collect po-
tential PoVs that may demonstrate the existence of vulnerability.
A PoV refers to inputs, test cases, or scripts that can potentially
trigger the vulnerability in the affected project [9]. Our insight is
that PoVs can exist within the following sources: (1) vulnerability
descriptions in RustSec advisories; (2) vulnerability fix commits,
developers may introduce unit tests to validate the patch and con-
firm vulnerability removal; and (3) discussions in GitHub issues
and pull requests for fixes. Therefore, we extracted all potential
PoVs from these sources. In total, we identified 154 PoV candidates
corresponding to 118 RustSec advisories, which included 16 from
RustSec advisory descriptions, 84 from fix commits, and 54 from
GitHub discussions (issues and vulnerability fix pull requests).

Projects with known vulnerability. To collect vulnerability
projects for reproduction, we applied two criteria: 1) the affected
project has PoV candidates, and 2) it must be compilable under the
vulnerable version and configuration described in the vulnerability
entries. We first excluded 181 projects without PoV candidates. We
then cloned the remaining 118 projects from GitHub or GitLab,
checked out commits prior to the fix, and set the Rust version ac-
cordingly. We applied cargo build for each affected project and
resolved dependency issues (such as version conflicts). Since our
reproduction system environment is Ubuntu 24.04, we further ex-
cluded 11 projects that require specific hardware (e.g., ARM archi-
tecture) or OS-specific features (e.g., Windows-only APIs). We also
followed the README file to execute the project and confirmed it
was runnable. For library projects, we only applied cargo build
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without running, because they do not have a main function. As
some projects contained multiple vulnerabilities at different ver-
sions, after merging the duplication, we got 94 unique projects
corresponding to 107 vulnerability entries.

2.2  Vulnerability Reproduction

We verify vulnerability reproduction by executing PoV candidates
on their corresponding affected projects. We then manually inspect
the program’s runtime behavior against the vulnerability descrip-
tion to identify the PoV that successfully triggers the vulnerability.
We refer to these confirmed triggering inputs as verified PoVs.
PoV candidates execution. We configure the execution environ-
ment according to different types of PoVs. (1) For unit test PoVs (59
cases), which are specific test functions or code snippets, we execute
them directly using cargo test as part of the project’s unit testing
framework. (2) For script-based PoVs (48 cases) that require inter-
action with a client project or external environment, we manually
construct the environment, configure the dependencies, and execute
them as independent programs. For example, RUSTSEC-2024-0376
describes a remotely exploitable denial-of-service vulnerability in
the Tonic gRPC framework. We set up both server and client com-
ponents in the PoV: the PoV script first starts the Tonic server with
TLS enabled, then launches a client configured with an incorrect
domain name (e.g., “wrong.com” instead of “example.com”).

To provide sufficient information for determining whether a

PoV successfully reproduces the vulnerability, we capture the pro-
gram runtime behavior during the execution. Specifically, we use
the script and top command to record program output, abnor-
mal termination signals, and capture resource consumption (CPU
and memory usage). In addition, we re-run the executable with
rust-gdb independently to extract stack traces.
Reproduction verification. To obtain verified PoVs, we first eval-
uate each candidate by checking whether the program output and
abnormal termination signals match the advisory description. We
further use the recorded stack traces to confirm that the vulner-
able code path is executed and the vulnerability is successfully
triggered. Specifically, for different vulnerability category, we need
extra specific information to validate reproduction. For example,
regarding memory-corruption and memory-exposure vulnerabili-
ties, we examine AddressSanitizer [22] output alongside program
output to confirm detection of memory safety violations (e.g., buffer
overflows, use-after-free); we consider the vulnerability reproduced
if AddressSanitizer reports errors or if the program crashes with
segmentation faults or panics. For denial-of-service vulnerabilities,
reproduction is confirmed if the PoV candidate fails to complete
within the timeout or exhibits abnormal resource consumption,
such as excessive CPU usage or memory exhaustion.

Through this validation process, we successfully reproduced 102
out of 107 vulnerabilities with verified PoVs. The remaining five
cases failed to be reproduced as their advisories lack runtime config-
urations or environmental prerequisites essential for reproduction.

2.3 Vulnerability Artifact Construction

To facilitate reproducibility, each vulnerability entry provides a
containerized execution environment and the associated vulnerabil-
ity metadata. The environment includes a Dockerfile, a pre-built
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Docker image, and the following data: (1) the source code of the
affected project with the verified PoV; (2) all vendored Rust depen-
dencies; (3) a Makefile that automates the build and reproduction
process; and (4) example execution outputs demonstrating that the
vulnerability has been triggered. Additionally, we provide metadata
for all cases, such as categories, severity, patched versions, and
affected functions. In summary, the standardized container images
and comprehensive metadata collectively guarantee the accurate
and efficient reproduction of the dataset’s vulnerabilities.

3 Statistics

This section presents key statistics of RUSTXEC to demonstrate the
dataset’s scope and characteristics. We analyze the distribution of
vulnerabilities across different categories and years, examine the
time requirements for vulnerability reproduction, and evaluate PoV
execution performance.

Category distribution. RusTXEc contains 102 reproducible vul-
nerabilities from 89 distinct Rust projects, spanning eight vulnerabil-
ity categories. Figure 2 illustrates how these vulnerability categories
are distributed from 2021 to 2025. RusTXEcC includes a relatively
higher number of vulnerabilities in 2021 and 2024, with fewer cases
in 2022 and 2023. The highest counts are memory-corruption (20
cases) in 2021 and denial-of-service (13 cases) in 2024. The remain-
ing categories have relatively even distribution across years.

Rust Vulnerability Categories Distribution

2021 [ | N N
2022 [ L B codeexecution
. [] crypto-failure

I denial-of-service

[] format-injection

] memory-corruption

2024
[ ] memory-exposure
I privilege-escalation
2025 [] thread-safety
0 5 10 15 20 25 30 35 40

Count

Figure 2: Distribution of vulnerabilities in RusTXEc by vul-
nerability category from January 2021 to April 2025.

RusTXEC contains 62 different Common Weakness Enumeration
(CWE) [1] IDs (as shown in Table 1). We extract CWE IDs from
CVE [2] and GHSA [3] entries and map them to RustSec categories.
For cases without available CWE information, we omit this field.
The most prevalent categories are memory-corruption (31 cases)
and denial-of-service (28 cases), reflecting persistent challenges
in memory safety and resource management. The most frequent
CWEs are CWE-787 (out-of-bounds write; nine cases), CWE-415
(double free; eight cases), and CWE-400 (uncontrolled resource
consumption; seven cases). This breadth supports comprehensive
analyses of vulnerability characteristics across the Rust ecosystem.
Vulnerability reproduction effort. We spent 324 person-hours
verifying and reproducing 102 vulnerabilities in RusTXtc. The
effort required for reproduction varied substantially across vul-
nerability categories. Specifically, we found that vulnerability in
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Table 1: Distribution of vulnerabilities in RusTXEc by Rust-
Sec category and corresponding CWE IDs. CWE IDs are ob-
tained from the references in each RustSec advisory.

RustSec Category  Corresponding CWE IDs # Cases
code-execution 23,77, 88 3
crypto-failure 287,288,327,328, 331, 347, 440, 497, 10
682, 863
denial-of-service 20, 130, 228, 232, 240, 248, 392, 400, 28
401, 476, 617, 670, 674, 754, 755, 770,
824, 835, 1284, 1333
format-injection 79, 113, 147, 436, 444, 601 11
memory-corruption 119,120, 190, 191, 366, 415, 416, 787, 31
843, 908
memory-exposure 125, 126, 212, 226, 459, 590 12
privilege-escalation 22,59, 269, 284, 668, 706 4
thread-safety 362 3
Total 62 (# Distinct CWE IDs) 102

privilege-escalation and code-execution required more time because
they often depend on specific system configurations and permission
settings. For example, RUSTSEC-2023-0066 is a privilege-escalation
vulnerability in the pleaser crate that abuses the TIOCSTI and TIO-
CLINUX ioctl request codes to inject input into a terminal or trigger
console-level commands. To reproduce it, we need to enable legacy
ioctl support via kernel parameters changes, configure setuid
root permissions, as well as compile a C exploit program to trigger
the privilege escalation. Because each vulnerability can require
substantial manual configuration, we provide reproduction instruc-
tions and a prebuilt Docker image for every vulnerability. Users
can run a single command to reproduce and observe the runtime
consequences.

PoV execution time. Executing the verified PoV to trigger the
vulnerability takes 9.4 seconds on average (as shown in Table 2). Cat-
egories that cause immediate crashes or detectable runtime errors
execute quickly, typically within a few seconds. For example, code-
execution vulnerabilities execute in 0.4 seconds on average because
the PoV triggers immediate, observable effects when executed in the
shell (e.g., RUSTSEC-2024-0350). In contrast, categories requiring
timeout waiting, resource monitoring, or intensive computations
take longer. For example, crypto-failure vulnerabilities take 19.6
seconds on average as they involve computationally expensive cryp-
tographic operations for exploitation (e.g., RUSTSEC-2022-0093).

Table 2: Average PoV execution time by vulnerability cate-
gory in RusTXEC.

RustSec Category  Time(s) RustSec Category  Time (s)
code-execution 0.4  memory-corruption 3.5
crypto-failure 19.6  memory-exposure 10.8
denial-of-service 12.0  privilege-escalation 6.5
format-injection 13.8  thread-safety 5.3
Overall 9.4
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4 Threats to Validity

Our manual verification of PoV execution may introduce human
bias. To mitigate this risk, we defined explicit reproduction crite-
ria and had multiple authors independently validate the results.
Additionally, we excluded vulnerabilities without available PoV
candidates, which may limit the generalizability of our findings.
Future work could broaden coverage by constructing PoVs based
on information from vulnerability advisories. Moreover, our tool
currently uses Ubuntu 24.04 as Docker image, which will reach
end-of-life in 2029. To address this, we plan to update the Docker
image to newer Ubuntu long time support versions as they become
available, ensuring long-term tool availability.

5 Related Work

Several empirical studies have collected Rust vulnerability datasets
to analyze vulnerability characteristics (e.g., memory bugs [24],
concurrency bugs [19, 20]) and safety requirements for unsafe Rust
programming [11]. While these studies provide valuable insights
into Rust vulnerability patterns, many of them could not ensure the
reproducibility of vulnerabilities. In contrast, our work guarantees
reproducibility by providing a verified PoV along with a container-
ized environment, enabling developers to observe concrete program
execution behavior and understand the real-world security impact.

Prior works have built Rust vulnerability datasets [10, 14, 16]
alongside detection tools to support tool evaluation. TypePulse [10]
identified 26 type confusion bugs from RustSec, which are unde-
fined behaviors caused by unsafe type conversion operations in
Rust. ERASan [14] introduced a dataset of 28 memory bugs to
evaluate their customized address sanitizer tailored for the Rust
environment. While these datasets focus on specific vulnerability
types for evaluating specialized tools, RusTXEC provides a dataset
covering eight vulnerability categories, enabling cross-category
security analysis and supporting the evaluation of general-purpose
Rust security tools.

There are several reproducible vulnerability datasets [9, 18] con-
structed for other programming languages. Bui et al. [9] constructed
Vul4], a dataset of 79 reproducible vulnerabilities for Java collected
from Project KB, to support program repair research. Pinconschi
et al. [18] proposed CB-REPAIR, a dataset containing 55 vulnera-
bilities in Linux-based C/C++ programs for evaluating automatic
program repair techniques. Similar to these efforts, our work pro-
vides the first comprehensive reproducible vulnerability dataset for
Rust. This fills a critical gap in Rust security research and advances
secure coding practices in the growing Rust community.

6 Conclusion

This paper introduces RustXEec, the first comprehensive repro-
ducible Rust vulnerability dataset for assessing security risks in
Rust applications. RusTXEc contains 102 vulnerabilities spanning
eight vulnerability categories, each with a verified PoV and detailed
vulnerability information for reproduction and analysis. To facili-
tate easy reuse, RusTXEC provides containerized environments that
eliminate manual environment setup effort. In the future, we will
leverage RusTXEC to provide richer evaluation signals for system-
atically analyzing existing Rust vulnerability detection tools and
guide the design of new detection tools.
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