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How Can ChatGPT Support Human Security
Testers to Help Mitigate Supply Chain Attacks?

Ying Zhang, Wenjia Song, Zhengjie Ji, Danfeng (Daphne) Yao, Na Meng

Abstract—Developers often build software on top of third-party
libraries (Libs) to improve programmer productivity and soft-
ware quality. The libraries may contain vulnerabilities exploitable
by hackers to attack the applications (Apps) built on top of
them. Such attacks are known as software supply chain attacks,
the documented number of which has increased 742% in 2022.
Researchers and developers created tools to mitigate such attacks,
by scanning the library dependencies of Apps, identifying the
usage of vulnerable library versions, and suggesting secure alter-
natives to vulnerable dependencies. However, recent studies show
that many developers do not trust the reports by these tools; they
need code or evidence to demonstrate how library vulnerabilities
lead to security exploits, in order to assess vulnerability severity
and modification necessity. Unfortunately, manually crafting
demos of application-specific attacks is challenging and time-
consuming, and there is insufficient tool support to automate
that procedure.

To help developers enhance software security, in this study,
we systematically explored the usage of a large language model
(LLM)—ChatGPT-4.0—to generate security tests, which unit
tests demonstrate how vulnerable library dependencies facil-
itate the supply chain attacks to given Apps. In our explo-
ration, we defined prompt templates to take in the various
vulnerability-relevant information we manually collected, and
generated prompts from those templates to query ChatGPT for
security test generation. We found that ChatGPT-generated tests
demonstrated 24 evidence or proof of vulnerability for 49 Apps.
To assess the consistency of test generation, we also evaluated
another five state-of-the-art LLMs. All the models generated
security tests for at least 17 cases that successfully demonstrate
the vulnerabilities. We filed six reports for the newly revealed
vulnerabilities in Apps, and got four Common Vulnerability
Entries (CVEs) assigned. Our use of ChatGPT outperformed
two state-of-the-art security test generators (TRANSFER and
SIEGE), by generating a lot more tests and achieving more
attacks. Our research will shed light on new research in security
test generation.

Index Terms—ChatGPT-4.0, supply chain attack, test genera-
tion, prompt design, proof of vulnerability, empirical

I. INTRODUCTION

Software development relies on open-source external de-
pendencies and third-party APIs to accelerate development.
Developers often integrate these APIs without fully vetting
their security vulnerabilities [78], [96], Recent studies showed
that many APIs contain known security flaws [61], [98].
When software applications invoke vulnerable APIs without
properly validating their security properties, vulnerabilities can
get propagated from APIs to those applications [5], [69]. As
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shown in Fig. 1, attackers can inject or identify exploitable vul-
nerabilities in third-party libraries through either (1) contribut-
ing code to open-source libraries, (2) direct code inspection of
the open-source libraries, or (3) consulting publicly available
vulnerability databases. They can further exploit these vulner-
abilities to propagate attacks through software supply chains
and compromise applications built on these libraries. Supply
chain attacks (e.g., attack though log4shell vulnerability [6])
grew more than 600%, and caused 12,000 incidents [4] since
2021. Open Web Application Security Project (OWASP) [34]
listed “vulnerable and outdated software components” as the
sixth top vulnerability.

Software Library (Lib)

Attacker

Injected or Observed 
Vulnerability

Client Applications (Apps)

2. Further attacks (e.g., remote code execution)
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Fig. 1: The threat model of supply chain attacks

To mitigate supply chain attacks, people created tools to
identify vulnerable library dependencies in software applica-
tions [1], [2], [7], [30], [36], [37], [42], [88], [91], and even
suggest fixes for those vulnerabilities [7], [14], [30], [83]. For
instance, snyk-test [42] and npm-audit [30] are CLI commands
that scan JavaScript (JS) applications for their package depen-
dencies, compare those packages against the package lists in
predefined vulnerability databases (e.g., CVE), and report a
vulnerability for each found match. However, none of these
tools demonstrate how identified vulnerabilities translate to
concrete exploits in the developer’s specific App context (e.g.,
denial of service) [66], [105]. For instance, Zhang et al. [105]
sent vulnerability reports together with patching suggestions to
developers. Some developers did not trust the reports or their
security implications; they demanded proof-of-concept attacks
to demonstrate the security exploit. Such delayed updates can
leave real vulnerabilities unaddressed, putting applications at
continued security risk.

To help developers assess the impact of reported vulnera-
bilities and prioritize their fixing process, this paper presents
our novel research of generating security tests using LLM,
for software applications (Apps) with vulnerable library de-
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pendencies (Libs). Specifically, if an App calls a vulnerable
library API, we generated a prompt for ChatGPT using the
following information: (1) the API name, (2) the non-private
method M inside App that (in)directly calls that vulnerable
API, (3) the Java class defining M , (4) the Lib test that shows
evidence or proof of vulnerability, and (5) the vulnerability
entry ID (e.g., CVE entry ID). Here, proof of vulnerability
(PoV) test executes Lib in specialized ways to show behavioral
differences between the vulnerable and patched versions of
Lib.

With that prompt, we queried ChatGPT to create a security
test for App, which test mimics Lib test to show proof of
vulnerability in App. The generated test executes App to
(i) propagate vulnerabilities from Libs to Apps via calls of
the API, and (ii) trigger abnormal behaviors of App such as
throwing errors or becoming unresponsive to customers’ nor-
mal requests. When developers run security tests generated in
such a way, they can observe vulnerability propagation paths,
foresee the serious consequences due to hackers’ successful
attacks, assess the severity levels, and better decide whether
to address those reported vulnerabilities.

The biggest challenge is ensuring that the generated tests
(1) execute those vulnerable APIs called by Apps, (2) trigger
any problematic behaviors of Apps, and (3) fail when reported
vulnerabilities are not fixed. Iannone et al. [64] and Kang et
al. [67] created tools to generate tests using EvoSuite [58],
the widely used test generation tool. Unfortunately, both tools
fail to generate security tests in many cases. They often spend
much time producing irrelevant tests but cannot synthesize the
specialized test inputs, code, or oracle.

Our initial experience with ChatGPT showed its great poten-
tial in generating code to satisfy software requirements. Addi-
tionally, many vulnerable open-source libraries were recorded
in publicly available security databases [3], [22], [51], [63],
[76], [97]. These databases catalog disclosed software vul-
nerabilities; they detail on the nature of each vulnerability
along with the affected library versions. Such a comprehen-
sive documentation can provide a useful context, where we
explored the usage of ChatGPT in generating security tests.
We investigated the following research questions (RQs) and
observed interesting phenomena:

RQ1: How effectively does ChatGPT generate security
tests? We created a dataset to include (1) 25 Libs and (2)
49 Apps, with each App depending on a vulnerable library
version. For each App, we offered ChatGPT a prompt to
describe the vulnerability, App context, and a security test
from Lib showing that the patched and vulnerable versions
differ. With the prompt, we asked ChatGPT to generate a
test for App by mimicking the given test. We found that
ChatGPT generated tests for all 49 Apps, 24 of which are
security tests that successfully demonstrated evidence or proof
of vulnerability (PoV).

RQ2: How does ChatGPT’s security test generation perfor-
mance differ given various types of prompts? By changing the
default design of our prompt template, we fed ChatGPT with
different subsets of the descriptive information in the above-
mentioned prompts (see RQ1). We observed that all informa-
tion elements provided important guidance to ChatGPT, while

the security test from Lib was the most important. Without
security test from Lib provided, none of the generated tests
by ChatGPT could successfully demonstrate PoV.

RQ3: How does ChatGPT compare with existing tools of
security test generation? We applied ChatGPT and two state-
of-the-art tools [64], [67] to the same datasets. Surprisingly,
ChatGPT outperformed both tools: it was always able to
generate tests, and those tests achieved much higher success
rates in realizing PoV.

RQ4: How does ChatGPT work with few-shot prompting?
We further explored few-shot prompting, by offering ChatGPT
one or three examples of test-generation tasks. Interestingly,
one-shot prompts led to worse results than the default zero-
shot prompting, but three-shot prompts led to better results.

RQ5: How effectively do different LLMs generate security
tests? We explored PoV test generation capabilities across both
closed-source and open-source LLMs with the default prompt
setting. Interestingly, closed-source models (GPT-4.0, Claude-
3.7-sonnet, Gemini-2.5-pro-preview) demonstrated higher ini-
tial test compilability than open-source alternatives (Llama3.3-
70b, Deepseek-chat-v3). While Llama3.3-70b achieved the
highest number of successful PoV demonstrations (23), each
model exhibited unique vulnerability demonstration capabili-
ties.

In summary, this paper makes the following contributions:
• New LLM experimental methodology. We explored

using a large language model for security test genera-
tion. We designed novel prompt templates that take in
the PoV-related information that we manually collected,
evaluated different ways of using ChatGPT, and compared
ChatGPT with state-of-the-art security-test generators:
TRANSFER [64] and SIEGE [67].

• New characterization on LLM capabilities. We ob-
served ChatGPT to work effectively, given prompts that
cover the relevant domain knowledge. ChatGPT outper-
formed state-of-the-art tools that leverage complex pro-
gram analysis and genetic programming to generate tests.
With zero-shot prompts, ChatGPT successfully generated
24 security tests for 49 Apps.

• New software security contributions. Some of
ChatGPT-generated tests revealed new vulnerabilities,
and we published four CVEs: CVE-2023-31441, CVE-
2023-37760, CVE-2023-37761, and CVE-2023-43151.

• New dataset. We created a dataset of real-world 49
⟨Lib,App⟩ pairs, which covers vulnerabilities from four
big categories. We open-sourced it at https://figshare.com/
s/73d194ffcf1c103e7943.

II. A MOTIVATING EXAMPLE

To facilitate discussion, here we introduce a concrete
example to show how vulnerabilities in Libs incur secu-
rity attacks. Bouncy Castle (BC) is a collection of Java
APIs used in cryptography [43]. According to CVE-2020-
28052 [17], its releases 1.65 and 1.66 have a vulnerabil-
ity: OpenBSDBCrypt.checkPassword(String bcryptString,

char[] password) improperly implements password-checking
logic, allowing wrong passwords to be accepted as valid ones.
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Listing 1 shows the security test defined by a BC version
later than 1.66, which demonstrates PoV. Ideally, if a BC
version has no vulnerability, the first assertion (line 9) succeeds
as the first parameter tokenString was derived from the
password test-token; the second assertion (line 12) succeeds
as the first parameter tokenString was not from wrong-token.
However, BC 1.65 and BC 1.66 fail the second assertion,
as the invalid password wrong-token is wrongly considered
to match tokenString. Such a security test demonstrates
the problematic behaviors of vulnerable library versions, and
implies the potential of security exploits (e.g., sending in
wrong passwords to pass identity authentication).

Although Listing 1 shows a PoV of the library, it does
not show how Apps built on top of vulnerable BC versions
can behave abnormally or get attacked. Existing vulnerability
detectors can report such vulnerable API calls in Apps [68],
[90], [105], [106]. However, as they do not show how vul-
nerable API calls introduce vulnerabilities or induce supply
chain attacks to Apps, App developers are reluctant to revise
Lib usage accordingly.

In this project, we explore to mitigate supply chain attacks,
by generating security tests to simulate hackers’ potential ways
of using Apps maliciously. Our approach is using ChatGPT to
generate security tests for Apps to mimic Lib tests. Our goal
is to investigate how effectively ChatGPT generates App-
specific security tests, when it is given relevant information
about the Lib vulnerabilities, App context, and exemplar
tests. Thus, we assume some tools or domain experts to detect
potential vulnerabilities and provide relevant data to ChatGPT
for test generation. Once a test is generated successfully,
domain experts or developers can run App with that test,
observe the problematic program behaviors themselves, assess
the security implication of supply chain attacks, and decide
whether to eliminate vulnerabilities by upgrading library ver-
sions or replacing API calls.

III. METHODOLOGY

We conducted an empirical study on ChatGPT’s capabil-
ity of generating PoV, for Apps that depend on vulnerable
Libs and call vulnerable APIs. We chose to experiment with
ChatGPT-4.0, because our preliminary work shows that Chat-
GPT has the best performance across the different LLMs as
shown in Section IV-F.

1 blic void performTest() throws Exception {
2 ... ...
3 int costFactor = 4;
4 SecureRandom random = new SecureRandom();
5 salt = new byte[16];
6 for (int i = 0; i < 1000; i++) {
7 random.nextBytes(salt);
8 final String tokenString =

OpenBSDBCrypt.generate("test-token".toCharArray(),
salt, costFactor);

↪→
↪→

9 isTrue(OpenBSDBCrypt.checkPassword(tokenString,
"test-token".toCharArray()));↪→

10 /* A safe BC version passes the following assertion; a
vulnerable one fails the assertion, as it considers
unmatched passwords to match. */

↪→
↪→

11 isTrue(!OpenBSDBCrypt.checkPassword(tokenString,
"wrong-token".toCharArray()));↪→

12 } }

Listing 1: A Lib test to show PoV in Lib

Our study has three phases: dataset construction, prompt
design, and result validation. Phase I (Section III-A) collects
known vulnerabilities in Libs, Lib tests showing PoV, and
Apps that can be affected by their calls of vulnerable APIs.
Phase II (Section III-B) adopts the information collected
by Phase I, formulates a variety of prompts for individual
⟨Lib,App⟩ pairs, and sends prompts to ChatGPT. These
prompts ask ChatGPT to leverage all information provided,
to generate security tests for Apps. Phase III (Section III-C)
gathers all outputs by ChatGPT, assesses the quality of gen-
erated tests, and evaluates ChatGPT’s capability accordingly.

A. Phase I: Dataset Construction

While existing datasets [64], [67] offer potential bench-
marks for evaluating security test generation, we found them
inadequate for our specific assessment of ChatGPT. One of the
datasets is not quite usable while the other is unrepresentative,
so we decided to create a new dataset. Specifically, although
the dataset used to evaluate TRANSFER [67] covers 22
Libs and 42 Apps, 21 of the Apps could not easily run to
demonstrate vulnerability PoV due to (1) project removal from
GitHub, (2) compilation or dependency issues, (3) missing
vulnerable API calls, and (4) unconvincing vulnerabilities in
test files that are excluded from software deliverables. The
dataset used to evaluate SIEGE [64] includes 11 Libs and 11
Apps, where Apps are handcrafted toy projects instead of real-
world programs. In order to systematically evaluate the test
generated by ChatGPT, we took two steps to create a dataset:
(1) finding vulnerabilities with exemplar PoV tests, and (2)
getting vulnerable Libs as well as dependent client Apps.

1) Locating Vulnerabilities with Exemplar PoV Tests: Vul-
nerabilities sparsely exist in software libraries. To efficiently
locate vulnerabilities, we started with the datasets mentioned
by prior work [67], [89] and initiated our exploration with 628
entries. Each entry is linked to a CVE entry or JIRA issue,
describing a vulnerable Lib and a GitHub repository showing
both the vulnerable and patched versions of Lib.

Our initial step involved automatically filtering the commit
history to identify commits adding test files. The first and
fifth authors then perform an in-depth analysis to identify
the vulnerable API for each of these filtered commits. As
vulnerability descriptions may not always precisely pinpoint
vulnerable library APIs, the authors spend time understanding
the program context and commit details to accurately identify
these APIs. They consider the APIs is vulnerable if it (1) is
mentioned or implied by the vulnerability description of CVE
or JIRA entry and gets revised, (2) directly or indirectly calls
the described vulnerable API, (3) is invoked by the described
API and is the root cause for the described vulnerability, or
(4) shares the same root cause with the described API (i.e.,
they both call the same root-cause vulnerable method). To
determine which API is the root cause, the first and fifth
authors discussed each case together, cross-validating their
findings to ensure consistency and reliability. To extract the
PoV test, we further chose vulnerability entries based on two
criteria:
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(a) Exemplar Security Test: Lib has at least one JUnit test
from the patched version, to demonstrate behavioral dif-
ferences between the vulnerable and patched versions.

(b) Successful Execution: The patched version of Lib should
run smoothly with the security test, requiring no extra
manual effort for bug fixing or software (re)configuration.

Criterion (a) ensures the exploitability of confirmed vulner-
abilities. Namely, if no Lib test is available to demonstrate
PoV, it is hard for us to manually craft and justify the ground
truth of test generation. Criteria (b) ensures that we can run
the security test defined for Lib, to observe the behavioral
differences between vulnerable and patched versions. In our
study, we implemented the two criteria as filters to refine initial
vulnerability datasets. The filters separately removed 427 and
156 entries, leaving 45 for further processing.

2) Collecting Libs and Apps for Vulnerabilities: For each
library identified in the 45 refined entries (see Section III-A1),
We automatically crawled GitHub using the GitHub API
to find client applications depending on these libraries. We
use the library or package name as keywords, filtering for
projects whose dependency versions fall within the vulnerable
range, and limiting our crawling to the first 10 pages of
results, given the large volume of projects returned. The first,
second, and third authors then manually inspected the code
of these projects to verify actual usage of the vulnerable
functionality (beyond mere dependency inclusion), with the
goal of identifying up to four client applications per library
that satisfy both criteria (c) and (d):

(c) At least one non-private Java method (not test) in App
directly or indirectly calls vulnerable API(s) in Lib, and
gets impacted by the library vulnerability.

(d) App compiles and runs successfully.

Criterion (c) ensures the feasibility of creating PoV tests.
Basically, if users craft malicious input values to feed certain
public or protected method(s) in App (i.e., the callers of
vulnerable APIs), they can run vulnerable APIs in malicious
ways and thus realize attacks. Criterion (d) ensures that we can
check the correctness of tool-generated tests via compilation
and program execution. This filtering process removed 16
from the 45 entries mentioned above, because we found no
client project to satisfy both criteria for those entries. As
shown in Table I, our dataset includes 29 vulnerability entries,
corresponding to 25 unique Libs. These libraries cover various
domains, such as data processing (e.g., Apache Commons
Codec [15]), web development (e.g., Apache CXF [11]), and
security (e.g., Spring Security [39]). Most Libs have a single
vulnerability (e.g., Dom4j [18]), while a few have multiple
(e.g., XStream [46]). In Table I, we identified 4 major cate-
gories among the 29 vulnerabilities: denial of service, directory
traversal, remote code execution, and others. Affected Library
Versions shows the vulnerable library versions described
by each CVE entry or JIRA issue. Vulnerable API(s) &
Potential Exploit shows the vulnerable APIs and security
consequence we summarized by inspecting all relevant data.

According to our experience, it is very challenging to
identify a sufficient number of Apps satisfying (c)–(d) for
any vulnerable library. To conduct a representative empirical

study with sufficient data points, we extensively explored the
version history of the retrieved Apps even though they did not
depend on vulnerable library versions in the current version.
Specifically for each found project App satisfying criteria (c)–
(d), we examined the version history to determine whether
any earlier version, denoted as Appi, depends on a vulnerable
library version. If Appi exists, we checked out Appi to
prepare for ChatGPT usage. Otherwise, we manually revised
the dependency version. For instance, OpenRefine [31] is a
library whose versions before 3.2-beta suffer from CVE-2018-
19859. However, we only found one client project for it, which
depends on a safe version of OpenRefine (i.e., 3.3). To make
sure that this client is still usable in our study, we downgraded
the library dependency in the configuration file to 3.1 without
further modification. This strategy reflects a common real-
world scenario where Apps rely on outdated dependencies due
to delayed patching. We do not inject handcrafted vulnerable
logic into Apps, as the approach risks introducing artificial or
irrelevant behaviors and was therefore avoided. By contrast,
our revision preserved the application code logic and only al-
tered the dependency version to formulate realistic conditions.
Our manual revision of dependencies does not compromise the
validity of our research, as we fairly compared all approaches
of security test generation on the same set of client Apps,
no matter whether their vulnerable dependencies are real or
injected. The last column in Table I shows the number of
clients we included for each Lib. There are five projects with
injected vulnerable dependencies, all of which are marked with
asterisks (*). At the end of Phase I, our dataset consists of all
relevant information for 49 ⟨App, Lib⟩ pairs.

Our newly created dataset overlaps with TRANSFER’s
dataset [67] by sharing 17 Apps in common, while sharing
0 App with SIEGE’s dataset [64]. This fact implies that our
dataset is very different from existing ones; it can enrich
the knowledge body of exploitable vulnerabilities in Apps.
Furthermore, we classified the 49 functions-under-test in our
dataset into 3 categories:

• C1: Functions directly calling vulnerable APIs and shar-
ing the same parameter lists with called APIs. For in-
stance, if a client function p(int, int) is defined to call
API q(int, int), the client function belongs to C1.

• C2: Functions directly calling vulnerable APIs but defin-
ing different parameter lists from called APIs. For in-
stance, if a client function p(long) is defined to call API
q(int, int), then the client function belongs to C2.

• C3: Functions indirectly calling vulnerable APIs. For
instance, if a client public function p() is defined to call
API q() in the following manner: p() → r() → q(),
where r() is a private client function directly calling q(),
then p() belongs to C3.

C1–C3 separately cover 20, 20, and 9 functions. We hy-
pothesize the complexity comparison of test-generation tasks
among these categories to be C1 < C2 < C3, mainly because
the less commonality is shared between functions-to-test and
vulnerable APIs, the more difficult it is for ChatGPT to
generate tests.
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TABLE I: The library vulnerabilities and client applications included in our dataset
Cate-
gory

Vulnerability
Entry ID Library Affected Library

Versions Vulnerable API(s) & Potential Exploit # of
Apps

CVE-2017-7957
(CWE-20) XStream [46] [, 1.4.9]

XStream.fromXML(...) mishandles attempts to create an instance of the primitive
type “void” during unmarshalling, leading to a remote application crash, i.e., denial of
service (DoS).

2

CVE-2018-
1000873 (CWE-20)

Jackson-
Modules-
Java8 [21]

[, 2.9.8) ObjectMapper.readValue(...) triggers DoS when it deserializes a very large
decimal value to time. 3

CVE-2018-11761
(CWE-611)

Apache
Tika [13] [0.1, 1.18] SAXParser.parse(...) was not configured to limit entity expansion, and thus

could lead to DoS. 1

CVE-2018-12418
(CWE-835) Junrar [26] [,1.0.1) The Archive constructor gets into an infinite loop when handling corrupt RAR files. 1

CVE-2018-1274
(CWE-770)

Spring Data
Commons [38]

[1.13, 1.13.10],
[2.0, 2.0.5]

PropertyPath.from(...) allocates resource without limits, and thus can cause
DoS due to its consumption of CPU and memory. 1

CVE-2019-10093
(CWE-770) Apache Tika [1.19, 1.21] Parser.parse(...) enables a carefully crafted 2003ml or 2006ml file to consume

all available SAXParsers in the pool. 1

Denial
of

Service
(13)

CVE-2019-12402
(CWE-835)

Apache
Commons
Compress [16]

[1.15, 1.18] Malicious inputs to ZipArchiveOutputStream.putArchiveEntry(...) or
ZipEncoding.encode(...) can cause infinite loops. 1

CVE-2020-28491
(CWE-770)

Jackson
Dataformat:
CBOR [20]

[, 2.11.4),
(2.12.0-rc1,
2.12.1)

ObjectMapper.createParser(...) allocates resources without limits; it can
cause java.lang.OutOfMemoryError. 1

CVE-2021-27568
(CWE-754)

Json-smart [28],
[29]

v1:[, 1.3.2), v2: [,
2.3.1), [2.4, 2.4.1)

JSONParser.parse(...) throws an uncaught exception, which can cause an
application crash or expose sensitive information. 2

CVE-2021-30468
(CWE-835)

Apache
CXF [11]

[, 3.3.11), [3.4.0,
3.4.4)

Malicious inputs to JsonMapObjectReaderWriter.fromJson(...) or
JsonMapObjectReaderWriter.fromJsonToJsonObject(...) can result in
an infinite loop.

1

CVE-2022-45688
(CWE-787)

JSON-java(i.e.,
hutool-
json) [41]

[, 20230227) Malicious inputs to XML.toJSONObject(...) or
JSONML.toJSONObject(...) can trigger DoS. 3

TwelveMonkeys-
595

TwelveMon-
keys [23] [0, 3.6.4) A corrupt JPEG file to ImageReader.read(...) can cause DoS. 2

(1*)

Zip4j-263 Zip4j [40] [0, 2.7.0) The ZipFile(...) constructor can take in a null File reference, which later
produces a null pointer exception. 2

CVE-2018-
1002200 (CWE-22)

Plexus
Archiver [35] [,3.6.0)

UnArchiver.extract(...), ZipUnArchiver.extract(...), and
TarGZipUnArchiver.extract(...) allow attackers to write to arbitrary files
via “../” in an archive entry (Zip Slip).

2

CVE-2018-
1002201 (CWE-22) ZT Zip [47] [, 1.13) ZipUtil.unpack(...) allows attackers to write to arbitrary files via archive

extraction (Zip Slip). 1

Direc-
tory

CVE-2018-19859
(CWE-22)

OpenRe-
fine [31] [, 3.2-beta) ImportingUtilities.allocateFile(...) allows arbitrary file write via

archive extraction (Zip Slip). 1(1*)

Traver-
sal (5)

CVE-2021-29425
(CWE-20)

Apache
Commons
IO [10]

[, 2.7) FileNameUtils.normalize(...) enables directory traversal, which provides
access to files beyond the target file location. 3

HTTPCLIENT-
1803

Apache
HttpClient [,4.5.3)

The URIBuider constructor, URIBuilder.setHost(...),
URIBuilder.build(...), and URIBuilder.toString(...) can result in
directory traversal.

1

Remote
Code

CVE-2017-7525
(CWE-22)

Jackson
Databind [19]

[, 2.6.7.1) [2.7.0,
2.7.9.1) [2.8.0,
2.8.9)

A deserialization flaw in the library allows maliciously crafted inputs to
ObjectMapper.readValue(...) to trigger remote code execution. 2

Execu-
tion (4)

CVE-2020-26217
(CWE-78) XStream [, 1.4.14) Malicious inputs to XStream.fromXML(...) allow attackers to run arbitrary shell

commands. 3

CVE-2021-23899
(CWE-611)

OWASP JSON
Sanitizer [,1.2.2) JsonSanitizer.sanitize(...) may allow hackers to inject arbitrary code into

embedding documents. 1

CVE-2022-25845
(CWE-502) Fastjson [8] [, 1.2.83) JSON.parseObject(...) may deserialize untrusted data, allowing hackers to

attack remote servers. 2

CODEC-134
Apache
Commons
Codec [15]

[, 1.13)
Malicious inputs to Base64.decodeBase64(...) or Base64.decode(...)
can realize covert channel [103], which creates a capability of transferring data
between processes that should not communicate

3

CVE-2018-
1000632 (CWE-91) Dom4j [18] [, 2.1.1)

Malicious inputs to DocumentHelper.createElement(...) or
Branch.addElement(...) can result in XML injection, which tampers with
XML documents.

2

CVE-2020-13956 Apache
HttpClient [12]

[, 4.5.13,), [5.0.0,
5.0.3)

Malicious inputs to CloseableHttpClient.execute(...) or
URIUtils.extractHost(...) trigger Blind Server-Side Request Forgery
(SSRF), which attack induces an application to issue a back-end HTTP request to a
supplied URL, but the response from the back-end request is not returned to the
application’s front-end response.

1

Others
(7)

CVE-2020-13973
(CWE-20)

OWASP JSON
Sanitizer [33] [,1.2.1)

JsonSanitizer.sanitize(...) does not properly escape disallowed characters,
and thus facilitates cross-site scripting (XSS), which enables the browser to
unknowingly execute malicious script on the client side and perform actions that are
otherwise blocked by the browser’s Same Origin Policy.

1

CVE-2020-28052
(CWE-20) Bouncy Castle 1.65, 1.66 OpenBSDBCrypt.checkPassword(...) improperly verifies passwords, allowing

wrong ones to be accepted as valid ones.
2

(1*)

CVE-2020-5408
(CWE-20)

Spring
Security [39]

[4.2.0, 4.2.16),
[5.0.0, 5.0.16),
[5.1.0, 5.1.10),
[5.2.0, 5.2.4),
[5.3.0, 5.3.2)

BCryptPasswordEncoder.encode(...) presents cryptographic weakness,
which may allow hackers to decrypt encrypted messages via a dictionary attack.

2
(2*)

CVE-2023-34454
(CWE-20)

snappy-
java [45] [, 1.1.10.1) Snappy.compress(...) improperly validates array length, and may cause Access

Violation errors. 1

* indicates the number of clients with injected vulnerable dependencies.
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Prompt Design

Write a JUnit test for function: [function-name] in ”CLIENT CODE“.
The test should verify whether the function [function-name] is affected
by the vulnerability: [vulnerability-ID], or affected by vulnerable APIs:
[vulnerable-API-list]. Mimic the test function ”TEST FUNCTION:“ [test-
function-name] I provide to generate the input in your test. For the
provided code ”CLIENT CODE“, mock the classes and functions that
are not Java SE APIs and have no definition provided.

TEST FUNCTION:
``` Java
[exemplar-test-impl]
```

CLIENT CODE:
``` Java
[client-code-impl]
```

Fig. 2: Our default prompt template

B. Phase II: Prompt Design

With the information collected in Phase I, we formulated
prompts and asked ChatGPT to generate tests. This section first
introduces the information elements extracted from our dataset
for each ⟨App, Lib⟩ pair (Section III-B1). It then introduces
our various ways of constructing ChatGPT prompts using
those elements (Sections III-B2 and III-B3).

1) Information Elements Extracted: For each ⟨App, Lib⟩
pair, we extracted seven elements for later prompt creation.

(i) A GitHub project of the client application App.
(ii) A vulnerable version of Lib on which App depends.

(iii) The vulnerable Lib API(s) called by App.
(iv) The non-private method M inside App that directly or

indirectly calls vulnerable APIs.
(v) The Java class C defining method M .

(vi) The Lib test T (i.e., a Java method). If it indirectly calls
vulnerable APIs, the definition of all methods standing
between T and APIs is also included.

(vii) The vulnerability entry ID (i.e., CVE or JIRA entry ID).

Elements (i)–(ii) are essential to represent an ⟨App, Lib⟩ pair;
(iii) and (vii) describe the library vulnerability; (vi) shows
an exemplar PoV test for Lib, and (iv)–(v) present relevant
context in App. These seven elements cover all necessary
information we can recognize to describe a generation task
of PoV test for App.

2) The Design of Our Default Prompt Template: We believe
that given more comprehensive prompts, ChatGPT is likely to
generate better tests. Therefore, we designed a default prompt
template to cover all seven elements mentioned above. As
shown in Fig. 2, the template has seven variables or customiz-
able parameters to accept data for each task-specifying prompt.
In more detail, variable [function-name] is the name of M (see
(iv)); [vulnerability-ID] refers to (vii), [vulnerable-API-List]
refers to (iii); [test-function-name] is the name of example test
(see (vi)); [exemplar-test-impl] refers to (vi); and [client-code-
impl] refers to (v).

Overall, the template asks ChatGPT to generate a JUnit test
for a function in App, so that (1) the test verifies whether
that App function is affected by a known vulnerability or
by specified vulnerable APIs, and (2) the test mimics the

Prompt Example

Write a JUnit test for function: [check] in ”CLIENT CODE“. The test
should verify whether the function [check] is affected by the vulnera-
bility: [CVE-2020-28052], or affected by vulnerable APIs: [OpenBSD-
BZCrypt.checkPassword]. Mimic the test function ”TEST FUNCTION:“
[performTest] I provide to generate the input in your test. For the provided
code ”CLIENT CODE“, mock the classes and functions that are not Java
SE APIs and have no definition provided.

TEST FUNCTION:
``` Java
// Here we omit details of BC security test
// (Listing 1) for brevity.
@Test
public void performTest() throws Exception { ... }
```

CLIENT CODE:
``` Java
// Here we omit details of the class, which
// defines the method check (...) in Listing 2
public class BcryptPasswordHashFunction

implements PasswordHashFunction { ... }
```

Fig. 3: A prompt derived from the default template

exemplar test to generate malicious inputs. With this template,
we generated 49 prompts.

For the motivating example described in Section II, we
actually found a GitHub project depending on Bouncy Cas-
tle. As shown in Listing 2, the project defines a method
BcryptPasswordHashFunction.check(...) to directly call
vulnerable API OpenBSDBCrypt.checkPassword(...). Al-
though both the API and its caller take in two parameters, the
caller method check(...) has to convert its second parameter
password before calling that API. To generate a security test
for check(...), we formulated the prompt shown in Fig. 3 by
customizing our template. Fig. 3 only shows partial code of
the example test and client class to simplify our presentation,
while the actual prompt we sent to ChatGPT includes the
complete code.

Given the prompt, ChatGPT successfully generated an
executable security test as requested. Listing 3 shows
a brief version of the generated code: a class named
BcryptPasswordHashFunctionTest defines a test function
testCheckFunction(), to call the vulnerable API with ap-
propriate formats of the seed inputs of exemplar test. The
generated test is very similar to the exemplar test, but it shows
PoV for client code.

3) The Design of Alternative Prompt Templates: In addition
to the default prompt template, we also defined five variant
templates by removing a single element from (iii)–(vii) each
time. In this way, we can explore how different information

1 blic class BcryptPasswordHashFunction implements
PasswordHashFunction {↪→

2 ...
3 // check(...) calls the vulnerable API, so it can be

affected by CVE-2020-28052.↪→
4 @Override
5 public boolean check(String passwordHash, String password) {
6 return OpenBSDBCrypt.checkPassword(passwordHash,

password.toCharArray());↪→
7 } ... }

Listing 2: A GitHub project defines a Java file to
call OpenBSDBCrypt.checkPassword(String,
char[])
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TABLE II: The six prompt templates we explored

Id Prompt Template Id Prompt Template

P Default (including iii-vii) P3 Without C (v)
P1 Without vulnerable APIs (iii) P4 Without the exemplar test (vi)
P2 Without M (iv) P5 Without the vulnerability ID (vii)

elements contribute to ChatGPT’s effectiveness. As shown in
Table II, to facilitate presentation, we use P to refer to the
default template, and use P1–P5 to refer to the five variants.
For instance, P5 leaves out (vii), but takes in (iii)–(vi). We
then generated 49 prompts using each variant template.

C. Phase III: Result Validation

After sending all prompts to ChatGPT, we gathered and
recorded ChatGPT’s outputs. We integrated the generated tests
into Apps using the following rules: if a generated test class
C ′ has a unique name and defines one or more test functions
for method-to-test M , we place the class into the test folder.
Otherwise, if C ′ has the same name as an existing class, we
put the non-conflicting content into the existing class; if C ′

defines test functions for a non-public method M , we placed
the tests into any existing (test) class where M is accessible.

For each generated test, we compiled App with the test
to check for compilation errors; if some compilation errors
were obvious and easy to fix (e.g., missing/wrong package
names or missing library dependencies), we fixed those errors
manually to explore whether ChatGPT could synthesize the
most important logic of security tests. After one or multiple
iterations of the compilation-and-fixing procedure, if a test
compiled successfully, we further executed App with that test
to observe runtime behaviors. If any exception or runtime error
was thrown, we studied the exception/error message, inspected
the intermediate program status via step-by-step debugging,
and discussed the relevance with PoV among authors until
reaching a consensus.

IV. EXPERIMENTS AND RESULTS

We empirically investigated three research questions (RQs):
RQ1: How effectively does ChatGPT generate security tests?

We explored the strengths and weaknesses of ChatGPT
in security test generation.

RQ2: How does ChatGPT’s security test generation perfor-
mance differ given various types of prompts? Among the

1 . // We omit less important details for brevity
2 blic class BcryptPasswordHashFunctionTest {
3 ...
4 @Test
5 public void testCheckFunction() {
6 int costFactor = 4;
7 for (int i = 0; i < 1000; i++) {
8 random.nextBytes(salt);
9 final String tokenString =

OpenBSDBCrypt.generate("test-token".toCharArray(),
salt, costFactor);

↪→
↪→

10 assertTrue(bcryptPasswordHashFunction.check(
tokenString, "test-token"));↪→

11 /* The App should fail the following assertion, when it
depends on a vulnerable BC version that messes up
correct with incorrect passwords.*/

↪→
↪→

12 assertFalse(bcryptPasswordHashFunction.check(
tokenString, "wrong-token"));↪→

13 } }

Listing 3: A brief and commented version of the security test
successfully generated by ChatGPT.

information elements (iii)–(vii), we explored which one
is more crucial.

RQ3: How does ChatGPT compare with existing tools of
security test generation? We wanted to learn how well
LLM-based security test generation compares with exist-
ing tools based on program analysis.

RQ4: How does ChatGPT work with few-shot prompting?
We explored whether ChatGPT works better when one
or more examples of test-generation tasks are provided.

RQ5: How effectively do different LLMs in generate security
test? We investigated whether our findings generalize
across different LLMs by evaluating the performance of
five state-of-the-art models on the security test generation
tasks.

This section first introduces the metrics we defined to assess
tools of security test generation (Section IV-A). It then ex-
plains our experiments and results for RQs.

A. Metrics

There are three metrics used in our experiments:
Tool Applicability (A) counts for how many ⟨App, Lib⟩

pairs, a tool generates a security test.
Test Compilability (C) counts the number of generated

tests that are compilable, with minor fixes applied.
PoV Demonstration (D) counts the number of compilable

tests that successfully demonstrate PoV for the known vulner-
abilities as expected.

B. ChatGPT’s Effectiveness in Security Test Generation (RQ1)

We created 49 prompts using the default prompt template
P , and sent them to ChatGPT , which uses GPT-4.0 as an
underlying model in our experiment.

As shown in Table III, ChatGPT generated tests for all
prompts. Of these, 26 tests are compilable and runnable as
is. In contrast, 12 tests become compilable and runnable
after we manually apply minor fixes, such as adding missing
dependencies, handling exceptions, or correcting hardcoded
file paths. 24 (including five tests with minor fixes) of these
38 tests effectively mimic the behaviors of given library tests,
and successfully demonstrate PoV by throwing relevant errors
or runtime exceptions.

1) Uncompilable Tests.: Among the 49 generated tests, 11
tests do not compile and cannot get easily fixed via minor
changes. Specifically, two of the tests violate Java access
rules, such as directly accessing private members outside of
declaring classes. Five tests use undefined program entities
(e.g., methods and classes). Another four tests call methods in-
appropriately, by missing some parameters or using the wrong
type of parameters. Our observations imply that ChatGPT does
not guarantee code compilation, even though the majority of
tests it generated (38/49) are easy to compile.

2) Less Effective Tests.: 14 generated tests do not trigger
vulnerabilities as expected. They either throw exceptions/er-
rors other than the expected ones, or throw no exception/er-
ror at all. Three reasons can explain such ineffectiveness.
First, Mockito [27]—a mocking framework—was used by
ChatGPT to mock unknown variables, methods, or classes
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TABLE III: Security tests generated by ChatGPT (Tool Applicability (A): 49, Test Compilability (C): 38, PoV Demonstration
(D) 24)

:

Idx Vulnerability Entry ID # of
Clients A C D Idx Vulnerability Entry ID # of

Clients A C D

1 CODEC-134 3 3 2 2 15 CVE-2020-13973 1 1 0 0
2 CVE-2017-7525 2 2 2 2 16 CVE-2020-26217 3 3 3 2
3 CVE-2017-7957 2 2 1 1 17 CVE-2020-28052 2 2 2 1
4 CVE-2018-1000632 2 2 1 1 18 CVE-2020-28491 1 1 1 0
5 CVE-2018-1000873 3 3 2 0 19 CVE-2020-5408 2 2 2 2*
6 CVE-2018-1002200 2 2 1 1 20 CVE-2021-23899 1 1 1 0
7 CVE-2018-1002201 1 1 1 1 21 CVE-2021-27568 2 2 2 2
8 CVE-2018-11761 1 1 0 0 22 CVE-2021-29425 3 3 2 2
9 CVE-2018-12418 1 1 0 0 23 CVE-2021-30468 1 1 1 0

10 CVE-2018-1274 1 1 0 0 24 CVE-2022-25845 2 2 2 2
11 CVE-2018-19859 1 1 1 0 25 CVE-2022-45688 3 3 3 1
12 CVE-2019-10093 1 1 1 0 26 CVE-2023-34454 1 1 1 1
13 CVE-2019-12402 1 1 0 0 27 HTTPCLIENT-1803 1 1 1 0
14 CVE-2020-13956 1 1 1 1 28 TwelveMonkeys-595 2 2 2 0

29 Zip4j-263 2 2 2 2

*indicates the number of clients with injected vulnerable dependencies

when generating tests. Unfortunately, the framework could not
mock everything (e.g., final classes), and sometimes led to
MockitoExceptions. Second, in generated tests, the parameters
passed to M are not always well prepared. They may be
malformed, include null-values in critical fields, or fail to con-
tain the essential values to trigger vulnerabilities. Third, our
generated tests uncovered two unexpected bugs. Specifically,
one test exposed a concurrency issue in NCI-Agency/anet’s

sanitizeJson(), leading to a potential denial-of-service vul-
nerability in applications. This issue has been reported and
assigned CVE-2023-31441.The other bug initially presented
as a NullPointerException. However, upon inspecting the
exception chain, we discovered that the test revealed a Server-
Side Request Forgery (SSRF) vulnerability within the As-
setVersionTransformer component of the aem-caching library
(version 0.0.3-SNAPSHOT).

3) Effective Tests.: Twenty-four generated tests can trigger
vulnerabilities as expected, including two cases involving
projects with injected vulnerable dependencies. For these tests,
ChatGPT successfully extracted vulnerability-triggering inputs
from the exemplar tests, reused those inputs to call method M
somehow, and presented relevant abnormal program behaviors
(e.g., infinite loop). As most vulnerabilities were already fixed
by the latest versions of subject projects, we only filed reports
for four of the newly revealed vulnerabilities in Apps. Two of
them were approved: CVE-2023-37760 and CVE-2023-43151.

Based on our experience, when M calls vulnerable API(s)
directly and defines a parameter list the same as the called
API(s), ChatGPT was more likely to succeed in producing
security tests; 15 of the 24 tasks included such M (i.e.,
methods under testing). This is understandable as ChatGPT
does not reason about program logic. When it tries to generate
a test similar to a given test, any commonality among the
App context, vulnerable API, and exemplar test can facilitate
knowledge reuse and test mimicry.

Meanwhile, when M calls vulnerable API(s) indirectly or
defines a different parameter list from the called API(s),
ChatGPT was less capable because less commonality is shared
between App and Lib tests. Interestingly, among the 24 tasks
well handled by ChatGPT, 9 tasks involve M with a different
parameter list and 1 task defines M to indirectly call the

vulnerable API. It implies three things. First, ChatGPT is
promising to effectively generate tests, even though the vulner-
ability propagation path from Lib to App is more complex or
less obvious. Second, ChatGPT’s effectiveness decreases as the
test-generation tasks become more challenging. For the three
categories of functions (i.e., C1–C3) in our dataset, ChatGPT’s
success rates of demonstrating PoV are 75% (15/20), 45%
(9/20), and 11% (1/9). Namely, ChatGPT is more effective
in generating tests when M shares more commonality with
vulnerable APIs, but less effective when there is less common-
ality. Third, our experiment results are generalizable, as our
dataset is not limited to trivial cases where functions-under-test
and vulnerable APIs share both parameter lists and program
context. Namely, the more commonality is shared between M
and vulnerable APIs (category C1), the more likely ChatGPT
can generate security tests successfully.

Finding 1: ChatGPT is promising in generating security
tests for known library vulnerabilities. Given 49 test gen-
eration tasks, it produced 49 tests, 38 of which are easy to
compile and 24 tests successfully demonstrated PoV.

For the 29 vulnerabilities we investigated, the 29 exemplar
tests have 5 types of test oracles: thrown exceptions, thrown
runtime errors, timeouts, infinite loops, and expected return-
values of function calls. Among those exemplar tests, when
vulnerable functions are called, 2 tests throw expected ex-
ceptions; 10 tests do not throw exceptions as expected; 4
tests throw runtime errors; 1 test does not throw an error as
expected; 3 tests encounter time out; 4 tests run into infinite
loops; 2 tests do not output expected values; 3 tests produce
the expected problematic outputs.

Among the 24 successfully generated tests, 22 of them
follow similar vulnerability exploitation logic as the given
exemplar tests. In particular, when vulnerable functions are
called, 3 of the generated tests throw expected exceptions;
13 tests do not throw exceptions as expected; 3 tests throw
runtime errors, 1 test does not throw an error as expected; 1
test encounters time out; 2 tests do not output expected values;
1 test produces the expected problematic output. None of the
generated tests run into infinite loops, which implies that it
may be harder for ChatGPT to generate tests to demonstrate
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TABLE IV: The comparison of tests generated in different ways

Id Prompt Template
Tool Test Compilable? PoV Demonstrated?

Applicability Yes No Yes No

(A) (C)
Access

Rule
Violation

Incorrect
Method

Calls

Unknown
Entity
Usage

(D)
No

error/
exception

Mockito
exception

Other
exceptions/

errors

P Default (all elements) 49 38 2 4 5 24 3 2 9
P1 Without vulnerable APIs (iii) 49 34 3 2 10 15 6 8 5
P2 Without M (iv) 49 39 4 1 5 14 3 8 14
P3 Without C (v) 49 15 3 1 30 1 7 4 3
P4 Without the exemplar test (vi) 49 30 4 2 13 0 11 11 8
P5 Without the vulnerability ID (vii) 49 36 6 0 7 14 3 5 14

such abnormal program behaviors.
Finding 2: ChatGPT effectively mimics human-crafted
tests; 22 of the 24 tests it successfully generated have
matching logic with the given exemplar tests.

To check the consistency of ChatGPT’s outputs, we con-
ducted an experiment by sending 25 test-generation tasks 5
times to ChatGPT, using 125 distinct conversation sessions.
We randomly sampled those tasks, without bias towards any
data. ChatGPT produced consistent results 113 of 125 times
(90%). Our results imply that ChatGPT often produces very
similar results, given the same prompt multiple times.

C. Impact of Information Elements on ChatGPT’s Outputs
(RQ2)

We used template variants P1–P5 to generate prompts for 49
⟨App, Lib⟩ pairs, and sent all prompts to ChatGPT for results.

1) ChatGPT’s Applicability Given Divergent Types of
Prompts: As shown in Table IV, no matter what informa-
tion item in the default template was removed, the resulting
prompts always guided ChatGPT to produce tests. It means
that ChatGPT has great applicability: it is always applicable
no matter how the prompts were formulated.

2) ChatGPT’s Test Compilability Given Divergent Types of
Prompts: As shown in Table IV, when P2 was used and
M was not specified, ChatGPT generated more compilable
tests than what it did for the default template P (39 vs. 38).
However, when P3 and P4 were used, a lot fewer generated
tests compile, i.e., 15 and 30. One possible reason is that
both P3 and P4 significantly removed the code context, while
the other templates removed almost no code context. As a
generative AI tool, ChatGPT predicts the next word(s) given
a data sequence, by using (1) an encoder to process the input
sequence and (2) a decoder to generate the output [25]. It
tended to generate more compilable tests when more relevant
program context was provided.

Among the 6 prompt templates, P3 caused ChatGPT to
create the most uncompilable tests—34; 30 of these tests fail
compilation due to their usage of unknown entities. This may
be because P3 does not specify the Java class C holding
the function-to-test; ChatGPT could not identify many valid
or usable entities available in the software projects, so it
usually refers to some nonexistent entities in the produced
tests. In contrast, P2 caused ChatGPT to create the fewest
uncompilable tests—10, only 5 of which fail compilation due
to their usage of unknown entities. This comparison implies
that ChatGPT could produce more compilable tests when (1)

more program context is provided in prompts, and (2) there is
no constraint on what method to test.

No matter what template we used, ChatGPT always pro-
duced uncompilable tests for some prompts. This observation
indicates that ChatGPT does not strictly follow Java rules on
syntax or semantics. As a generative AI model, it was trained
to predict the next words or phrases to follow a given se-
quence. Thus, the generated code may violate access rules, call
methods with inappropriate parameter lists, or use unknown
program entities. This observation implies the necessity of
applying sanity checks to ChatGPT-generated code and fixing
any revealed bugs, to ensure the program quality.

Finding 3: Among the five template variants we explored,
P3 (Without the client project class C) and P4 (Without
the exemplar test) caused ChatGPT to work considerably
worse in producing compilable tests. ChatGPT tended to
produce more compilable tests, given more contextual code
and fewer constraints relevant to the test-generation tasks.

3) ChatGPT’s PoV Demonstration Given Divergent Types
of Prompts: Removing any element from P worsened Chat-
GPT’s effectiveness. Among the variants, P4 caused ChatGPT
to work worst, producing zero successful PoV demonstration.
This phenomenon implies that exemplar tests offer (1) im-
portant program structures for potential security tests, and (2)
essential hints on vulnerability-triggering inputs. Without Lib
tests, ChatGPT generated 11 tests throwing no error/excep-
tion, 11 tests wrongly mocking program entities, and 8 tests
triggering irrelevant errors/exceptions. Although slightly better
than P4, P3 also worsened ChatGPT significantly and only one
security test was produced successfully. This may be because
the removed Java class C holds lots of context, whose absence
caused ChatGPT to create tests in a context-agnostic way,
making the created tests irrelevant or invalid.

P1, P2, and P5 had very similar effects on ChatGPT, as the
tool produced 15, 14, and 14 security tests given the prompts
derived from each of them. All these numbers are much lower
than the number reported for the default template P : 24. This
implies that the elements removed by individual templates
(iii, iv, vii) provide valuable signals to ChatGPT, to help it
identify and focus on the vulnerable APIs, function-to-test, and
specialized vulnerability. While (v) and (vi) provide as much
relevant code as possible for ChatGPT to refer to, the other
elements (iii, iv, vii) guide ChatGPT to pay special attention
to the most important content in the relevant code.
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TABLE V: The input information required by the default
setting of different tools (Yes: ✓, No: ✗)

Information SIEGE TRANSFER ChatGPT

Vulnerable API ✓ ✓ ✓
M ✗ ✓ ✓
C ✗ ✓ ✓
Exemplar test ✗ ✓ ✓
Vulnerability ID ✗ ✗ ✓
All .class files of App ✓ ✓ ✗
JAR file of Lib ✓ ✓ ✗
Vulnerable line number
in Lib ✓ ✗ ✗

Finding 4: Among the five information elements covered
by the default prompt template P , all elements played an
important role to help ChatGPT effectively generate security
tests. In particular, (v) and (vi) were more important than
(iii), (iv), and (vii).

D. Tool Comparison (RQ3)

Two tools were recently proposed to automatically generate
security tests: SIEGE [64] and TRANSFER [67]. SIEGE
adopts a genetic algorithm (GA). For any ⟨App, Lib⟩ pair,
SIEGE must be executed under the project folder of App,
which includes all compiled .class files of App and JAR files
of library dependencies (including Lib). As shown in Table V,
SIEGE also requires users to specify the search target (i.e.,
the coverage goal for tests-to-generate), including the vulner-
able API and vulnerable line number in Lib. SIEGE reuses
EvoSuite [58]—the popularly used test generation tool—to
generate tests, select tests based on their closeness to the
specified target, and evolve those tests with some randomness
to get better tests. SIEGE stops when the time budget is used
up or some tests perfectly match the target.

Similar to SIEGE, TRANSFER also generates security
tests using GA. However, as shown in Table V, TRANSFER
requires users to provide slightly different inputs: instead of in-
cluding the vulnerable line number, users should designate C,
M , and an exemplar test from Lib. It conducts program static
analysis to create both call graphs and control-flow graphs for
App, and uses dynamic instrumentation to assess test coverage.
It executes and dynamically instruments the exemplar test, to
identify program states relevant to the vulnerability, and to ex-
tract conditions that must be satisfied by any generated security
test. Finally, TRANSFER adopts the extracted information to
guide EvoSuite and derive security tests. Due to the usage
of exemplar test and advanced program analysis techniques,
TRANSFER manifested better effectiveness than SIEGE [67].

1) Experiment: We prepared the inputs required by SIEGE
and TRANSFER for 49 ⟨App, Lib⟩ pairs, and executed both
tools. Note that the two tools have full access to the .class files
of each App and the JAR file of each Lib, while ChatGPT
can only access the partial code described in prompts. For
accurate comparison, we properly prepared the inputs for
individual tools. We copy-and-pasted each tool-generated test
to appropriate places. We leveraged the build process to reveal
compilation errors. We also applied minor fixes to obvious
and simple compilation errors. If compilation succeeded, we
executed App with the generated test to observe runtime

TABLE VI: The comparison between ChatGPT and state-of-
the-art tools on our dataset

Tool
Applicability Test Compilability PoV

(A) (C) Demonstration
(D)

ChatGPT 49 38 (26 + 12 ∗) 24 (19 + 5∗)
ChatGPT w/o
vulnerability ID
(i.e., P5)

49 36 (18 + 18*) 14 (7 + 7*)

TRANSFER 16 13 (9 + 4∗) 4 (3 + 1∗)
SIEGE 1 1 0

* marks the number of tests that compile after we applied minor fixes

behaviors. If any exception or runtime error was thrown, we
studied the exception/error message, inspected intermediate
program states via step-by-step debugging, and discussed the
relevance among authors until reaching a consensus.

2) Results: As shown in Table VI, ChatGPT outperformed
current tools considerably by having much better tool applica-
bility, test compilability, and PoV demonstration. It generated
tests for all 49 ⟨App, Lib⟩ pairs, while TRANSFER only
generated test functions or code snippets for 16 pairs. SIEGE
worked much worse, creating a test for only one pair.

In terms of compilability, 13 out of the 16 tests generated by
TRANSFER are compilable, including 4 tests with minor fixes
applied; 3 of the 16 tests fail compilation due to their usage
of unknown entities. For those 16 tasks, ChatGPT generated
15 compilable tests, including 3 tests fixed with minor edits.
The only test output by SIEGE compiles successfully. For that
same task, ChatGPT also generated a compilable test. These
phenomena imply that ChatGPT outperforms existing tools by
generating more compilable or easy-to-compile tests. There is
no task showing either existing tool to outperform ChatGPT.

In terms of PoV demonstration, only four of the tests output
by TRANSFER trigger vulnerabilities; For the four Apps
handled well by TRANSFER, ChatGPT also generates tests
that trigger the same vulnerabilities, indicating that it produces
a superset of the effective PoVs found by TRANSFER. Among
the remaining nine compilable tests produced by TRANSFER,
six tests execute smoothly, without any error or exception;
three tests trigger irrelevant exceptions. The only test by
SIEGE fails to trigger any vulnerability, because it throws an
irrelevant exception. These observations indicate that ChatGPT
not only outperforms TRANSFER but also discovered more
diverse and effective vulnerability-triggering PoV test

When ChatGPT and TRANSFER perform differently, one
may wonder whether (1) the extra input of vulnerability ID that
ChatGPT takes or (2) the distinct tools’ working mechanisms
explain the observed differences. To characterize the contribu-
tions of both factors between ChatGPT and TRANSFER, in
Table VI, we also included a variant approach of the default
ChatGPT usage by using template P5. As shown in the table,
when ChatGPT took in part of its inputs that are also re-
quired by TRANSFER, it achieved better tool applicability (49
vs. 16), test compatibility (36 vs. 13), and PoV demonstration
(14 vs. 4) than TRANSFER. Meanwhile, the variant approach
worked less effectively than our default ChatGPT usage. These
results imply that between ChatGPT and TRANSFER, both
(1) the vulnerability ID that ChatGPT takes and (2) the
distinct tools’ working mechanisms contribute to the observed
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TABLE VII: The comparison between ChatGPT and TRANS-
FER on the TRANSFER’s dataset that we restored

Tool
Applicability Test Compilability PoV

(A) (C) Demonstration
(D)

ChatGPT 28 20 (9 + 11*) 16 (9 + 7*)
ChatGPT w/o
vulnerability ID
(i.e., P5)

28 24 (13+11*) 14 (10+4*)

TRANSFER 12 9 (3 + 6*) 5 (3 + 2*)

differences, although (2) plays a more important role.
We further inspected the cases where TRANSFER worked

worse than ChatGPT, and summarized three major limitations
of the tool design. First, TRANSFER adopts EvoSuite, to
generate tests and execute the method-to-test M . However,
EvoSuite is not quite effective; some or even most of the
tests generated by EvoSuite do not execute M at all. Second,
TRANSFER has difficulty synthesizing or mocking complex
input parameters for M . For instance, it could not synthesize a
parameter of type net.sourceforge.pmd.RuleSet, but Chat-
GPT mocked such an object via the Mockito framework.

Third, TRANSFER has difficulty incorporating the knowl-
edge embedded in exemplar tests into test generation. For
instance, CODEC-134 is related to two vulnerable APIs:
Base64.decode(...) and Base64.decodeBase64(...). We
provided both TRANSFER and ChatGPT inputs relevant to
that vulnerability, including the Lib test to show PoV of one
API Base64.decode(...), and a client Java class to call the
other API Base64.decodeBase64(...). We used both tools
to generate a security test for the client code. Unfortunately,
TRANSFER could not reuse any domain knowledge from the
Lib test, but ChatGPT successfully achieved that.

SIEGE worked much worse than ChatGPT. The major
reason is that SIEGE has very limited applicability, probably
due to implementation issues. Among the 49 ⟨App, Lib⟩ pairs,
SIEGE was only applicable to a single pair.

Finding 5: ChatGPT outperformed both TRANSFER and
SIEGE on our dataset. No security test was successfully
generated by TRANSFER or SIEGE, but not by ChatGPT.
ChatGPT has great potentials in generating security tests.

3) Additional Experiments and Results: For fair compar-
ison, we also tried to apply tools to the datasets mentioned
by papers of SIEGE and TRANSFER [64], [67]. Unfortu-
nately, as we mentioned before, the open-sourced dataset of
TRANSFER [48] has 21 apps that are not quite usable in
our evaluation. Seven of the Apps lack essential details for
successful build or execution; six Apps depend on secure
instead of vulnerable versions of Libs; five Apps have no
vulnerable API calls or Lib test; two Apps wrap vulnerable
API calls with security sanity checks to eliminate potential
exploits; one App calls the vulnerable API in the test file. To
fully leverage TRANSFER’s dataset in our tool-comparison
experiment, we manually replaced the security dependencies
with vulnerable ones in six Apps, and still used the single App
that calls vulnerable API in the test file.

In this way, we experimented with 28 of the 42 ⟨App, Lib⟩
pairs in TRANSFER’s dataset. As shown in Table VII, by
applying ChatGPT and TRANSFER to that dataset, we found

ChatGPT outperform TRANSFER in all metrics. We also
applied ChatGPT’s variant approach based on P5, as this
variant takes only inputs that the default approach commonly
shares with TRANSFER. This variant also outperformed
TRANSFER in all metrics, indicating the stronger power of
ChatGPT in generating security tests.

Finding 6: ChatGPT outperformed TRANSFER on the
TRANSFER’s dataset that we restored, no matter whether
ChatGPT takes in solely the inputs shared with TRANSFER
or those together with the unique input vulnerability ID.

TABLE VIII: The comparison between ChatGPT and SIEGE
on SIEGE’s dataset

Tool
Applicability Test Compilability PoV

(A) (C) Demonstration
(D)

ChatGPT w/o
exemplar test (i.e.,
P4)

11 10 0

ChatGPT taking in
only vulnerable
API and C

11 7 0

SIEGE 9 9 0

Although SIEGE’s dataset is publicly available, the dataset
includes no Lib test for ChatGPT to refer to. Therefore, when
applying ChatGPT to SIEGE’s dataset, by default, our prompts
do not include any Lib test. Furthermore, we also explored a
variant usage of ChatGPT by specifying only the vulnerable
API and client code C, so that this variant takes in no more
input than SIEGE.

As shown in Table VIII, SIEGE generated tests for 9 of
the 11 tasks; the tests are compilable, but no test shows PoV.
In comparison, ChatGPT-without-exemplar-test generated 11
tests; 10 of the tests are compilable, and 1 test is uncompilable
due to wrong type casting. None of the tests show PoV. This is
as expected. As mentioned in Section IV-C, when no exemplar
test is offered, ChatGPT cannot effectively generate security
tests. ChatGPT’s variant usage that takes no more input than
SIEGE also generated 11 tests; 7 of the tests are compiable
and 0 test shows PoV. The result implies that compared
with SIEGE, ChatGPT always has a better tool applicability,
although the test compilability and PoV demonstration of
ChatGPT-generated tests are not necessarily better.

Finding 7: ChatGPT is always more applicable than
SIEGE. However, when no exemplar test is provided, Chat-
GPT does not achieve better PoV demonstration.

E. Comparison between Zero-shot Prompting and Few-shot
Prompting (RQ4)

In all experiments we have explained so far, we adopted the
zero-shot prompting technique. Namely, we did not provide
any exemplar question-answer pair to ChatGPT, to enable in-
context learning where demonstrations are provided in prompts
to steer the model for better performance. One hypothesis
we had is that ChatGPT might work better given few-shot
prompts. To validate that hypothesis, we conducted an exper-
iment by sending ChatGPT question-answer pair(s) in each
prompt. As shown in Fig. 4, a three-shot prompt first describes
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Assume you're a security expert. I provide the prompt and you 
provide the corresponding response. I will provide the examples with 
concrete values for the place holders [] in the following prompt 
template, and the result you're supposed to produce:

Prompt template:
Write a JUnit test for function: [function-name] in "CLIENT CODE".
The test should verify whether the function [function-name] is affected
by the vulnerability: [vulnerability-ID], or affected by vulnerable APIs:
[vulnerable-API-list]. Mimic the test function "TEST FUNCTION:" 
[test-function-name] I provide to generate the input in your test. For 
the provided code "CLIENT CODE", mock the classes and functions 
that are not Java SE APIs and have no definition provided.

Example 1: 
[vulnerability-ID]: CODEC-134
[vulnerable-API-list]: Base64.decode, Base64.decodeBase64
[function-name]: decode
TEST Function: …
CLIENT CODE: …
Response you provide should be: …

Example 2:
[vulnerability-ID]: CVE-2018-12418
[vulnerable-API-list]: Archive.Archive
[function-name]: createInstance
TEST Function: …
CLIENT CODE: …
Response you provide should be: …

Example 3:
[vulnerability-ID]: CVE-2020-13956
[vulnerable-API-list]: CloseableHttpClient.execute, 
URIUtils.extractHost
[function-name]: post
TEST Function: …
CLIENT CODE: …
Response you provide should be: …

-----------------
[vulnerability-ID]: HTTPCLIENT-1803
[vulnerable-API-list]: URIBuilder.URIBuider, 
URIBuilder.setHost,URIBuilder.build, URIBuilder.toString
[function-name]: startElement

An Exemplar Prompt for Few-Shot Learning

Fig. 4: A three-shot prompt that provides examples for three
test-generation tasks

the default template P we used for zero-shot learning. It then
provides three pairs of (1) input parameters to customize P ,
and (2) exemplar output we manually crafted in response
to those customized test-generation tasks. Finally, it offers
a fourth set of input parameters to customize P , making
ChatGPT generate a test accordingly.

To improve the representativeness of our evaluation, we
experimented with two types of few-shot prompts: one-shot
and three-shot prompts. To avoid the randomness contributed
by diverse question-answer pairs, for each type of prompts,
we intentionally provided the same set of question-answer
pair(s). Namely, among the 49 ⟨App, Lib⟩ pairs in our dataset,
for 3-shot prompts, we randomly picked 3 pairs for example
construction, and used the remaining 46 pairs for evaluation.
For one-shot prompts, we used one of the three pairs for
example construction, and reused the evaluation set for three-
shot prompts mentioned above. By splitting the dataset in

TABLE IX: The comparison between zero-shot and few-shot
prompting of ChatGPT on the dataset of 46 ⟨App, Lib⟩ pairs

Tool
Applicability Test Compilability PoV

(A) (C) Demonstration
(D)

ChatGPT with
zero-shot learning
(default)

46 36 (24 + 12*) 22 (17 + 5*)

ChatGPT with
one-shot learning 46 32 (22 + 10*) 14 (11 + 3*)

ChatGPT with
three-shot learning 46 37 (30 + 7*) 24 (23 + 1*)

this way, we ensure that (1) there is no overlap between the
exemplar question-answer pairs and evaluation questions, and
(2) different prompting techniques are evaluated with exactly
the same data portion.

Table IX compares the results of few-shot prompts
against those of our default prompts. As shown in the
table, with one-shot prompts, ChatGPT has worse test
compilability (32 vs. 36), and worse PoV demonstration
(14 vs. 22). However, with three-shot prompts, ChatGPT
has slightly better test compilability (37 vs. 36) and better
PoV demonstration (24 vs. 22). Surprisingly, including
question-answer pairs into prompts does not guarantee
improvements, but may worsen the results. Two possible
reasons can explain the observed phenomena. First, when
one-shot prompts are provided, the only question-answer
pair mentioned is insufficient to steer ChatGPT for better
performance, but may confuse the model to output less
optimal results. Second, when three-shot prompts are
offered, the multiple question-answer pairs mentioned present
more demonstrations to better enable in-context learning.

Finding 8: Compared with zero-shot prompting, one-shot
prompting makes ChatGPT perform worse, while three-shot
prompts improves ChatGPT’s performance. Namely, few-
shot prompting does not necessarily help improve the quality
of generated test.

F. Comparison across the different LLMs with default prompt
settings (RQ5)

To assess the consistency of PoV test generation for client
projects among different LLMs, we evaluated five state-of-
the-art models : three closed-source LLMs (GPT-4.0, Gemini-
2.5-pro-preview, and Claude-3.7-sonnet) and two open-source
LLMs (Llama3.3-70b and Deepseek-chat-v3). All experiments
were conducted through API calls with the temperature set to
0 to minimize randomness and ensure consistent outputs.

Table X compares each model’s performance based on three
metrics. As shown in the table, the results are consistent
with what we observed in the ChatGPT experiment. They
demonstrate better performance than TRANSFER and SIEGE
in test generation across the 49 client applications in our
dataset. Claude-3.7-sonnet achieved the highest initial test
compilability (29), Gemini-2.5-pro-preview generated 25 ini-
tially compilable tests. The open-source models Llama3.3-70b
and Deepseek-chat-v3 generated fewer initially compilable test
cases, which are 20 and 19 respectively. After applying minor
fixes, all models generated more than 30 compilable tests.
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TABLE X: The comparison among different LLMs with
default prompt settings on the dataset of 49 ⟨App, Lib⟩ pairs

Tool Appli-
cability Test Compilability PoV

(A) (C) Demonstration
(D)

GPT-4.0 49 35 (20 + 15*) 23 (16 + 7*)
Gemini-2.5-pro-preview 49 34 (25 + 9*) 18 (13 + 5*)
Claude-3.7-sonnet 49 35 (29 + 6*) 17 (14 + 3*)
Llama3.3-70b 49 36 (20 + 16*) 23 (13 + 10*)
Deepseek-chat-v3 49 32 (19 + 13*) 20 (13 + 7*)

ChatGPT (ChatBox with
GPT-4.0) 49 38 (26 + 12*) 24 (19 + 5*)

For PoV demonstration (D), Llama3.3-70b, an open-source
LLM, generated a comparable number of PoV demonstra-
tions (13 + 10*) to GPT-4.0. Among these two models,
Llama3.3-70b generated two unique tests that ChatGPT did
not output. GPT-4.0 with temperature 0 performed consistently
with ChatGPT, across all projects except one. The marginal
difference was likely due to variations in system prompts
and hyperparameter configuration, between the chat interface
and API call. Deepseek-chat-v3, Gemini-2.5-pro-preview and
Claude-3.7-sonnet generated fewer PoV demonstrations. Im-
portantly, despite ChatGPT’s better overall performance, other
models successfully demonstrated PoVs for vulnerabilities that
ChatGPT missed.

We found that 12 projects had the PoV uniquely generated
by only a single model other than ChatGPT. Specifically, 5
of the 12 projects were uniquely and successfully handled by
Claude-3.7-sonnet, 2 projects by GPT-4.0, 3 by Gemini-2.5-
pro-preview, and 2 by Llama3.3-70b. This indicates that dif-
ferent LLMs can uncover vulnerabilities in unique scenarios.
Meanwhile, 26 of the vulnerable projects had successful PoVs
generated by multiple models, suggesting overlap in their
PoV demonstration generation capabilities. Of these, seven
projects had successful PoVs generated by all five evaluated
LLMs. However, for 11 projects, no LLMs could generate
effective PoV tests, primarily for two reasons: (1) Mockito-
related errors hinder the generation of compilable tests; (2)
the generated tests, although compilable, fail to trigger and
reveal the target vulnerability.

Our comparative analysis reveals that closed-source models
generally demonstrated higher initial Test compilability than
their open-source models. There is a substantial overlap in
the PoV generation capabilities across different LLMs. LLMs
encounter common challenges when getting applied to 11
of the client applications. These challenges are concerning
handling complex code context (e.g., failing to Mock the
objects and functions), and crafting tests that effectively trigger
specific vulnerabilities.

Finding 9: Compared to ChatGPT, GPT demonstrates
similar performance in both Test Compilability and PoV
Demonstration. There is a substantial overlap in the PoV
generation capabilities across different LLMs; LLMs also
encounter common challenges when getting applied to 11
of the client applications.

V. THREATS TO VALIDITY

Threats to External Validity: Our observations may be
limited to the experiment datasets. Among the 49 Apps in our
dataset, 9 functions-under-test call vulnerable APIs indirectly,
and 26 functions-under-test have parameter lists different from
those of the vulnerable APIs they call. The inclusion of
these non-trivial cases helps ensure the representativeness
of our observations. In the future, to make our findings
more generalizable, we will explore more vulnerabilities, and
experiment with more LLMs as well as programs written in
other languages.

Our current investigation relies on exemplar security tests
from Libs to show PoV. If a Lib does not have such tests, our
empirical findings may not generalize well to Apps using that
Lib. Prior work [67] shows that most Lib vulnerabilities are
fixed with test cases, implying the wide existence of exemplar
tests and good generalizability of our findings. Future work
can overcome this limitation by mining reusable proof-of-
concept malicious inputs online. Because some vulnerabilities
share malicious inputs (e.g., invalid inputs to realize directory
traversal), if we reuse inputs across the vulnerabilities under
the same category, we do not necessarily need any exemplar
test for a particular Lib.

Threats to Internal Validity: We experimented with the
default setting of ChatGPT, without controlling or tuning any
parameter it defines. LLMs exhibit inherent non-deterministic
behavior [57], [81], [86], causing identical prompts to produce
varying outputs. This stochasticity threatens experimental va-
lidity. To quantify this effect, we submitted 25 test-generation
tasks five times each to ChatGPT-4.0 across 125 independent
conversation sessions, yielding consistent outputs in 113 trials
(90% consistency). Additionally, we validated these findings
through experiments with five LLMs, setting the temperature
parameter to 0 to minimize stochastic behavior. The repro-
ducible results across controlled conditions confirm our initial
findings with ChatGPT. Based on these results, we believe
that the internal randomness of ChatGPT did not significantly
compromise the validity of our experimental outcomes.

Our manual verification during API invocation validation
and result validation poses a potential threat to internal
validity, as the verification steps require human judgment
to determine whether generated PoV tests trigger the same
vulnerability as the target library. To address this limitation,
we developed explicit criteria for vulnerability classification
and employed multiple researchers to independently verify a
subset of our findings, ensuring consistency in our evaluation
methodology.

Threats to Construct Validity: ChatGPT was trained on large
collections of text data available online (e.g., books, articles,
and web pages). Thus, it was likely trained with existing vul-
nerability entries (CVEs and issue reports), software libraries,
and apps, but was not trained with app-specific security tests.
This is because app-specific security tests are rare on the
Internet. None of the tests we generated ever existed for
those apps. ChatGPT would not know about these app-specific
security tests beforehand, so our experiment does not suffer
from the data leakage issue of machine learning.
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VI. RELATED WORK

The related work includes automatic vulnerability repair,
security test generation, and LLM-based research.

A. Automatic Vulnerability Repair (AVR)

Various approaches were proposed to generate repair
patches, to potentially accelerate manual security analysis and
vulnerability removal [54], [55], [59], [72]–[74], [77], [102],
[104], [106]. For instance, VuRLE [74] and SEADER [106]
learned vulnerability-repair patterns from ⟨insecure, secure⟩
code examples; they both used the patterns to detect vul-
nerabilities and suggest repairs. Search-based program repair
tools [72], [73], [77], [102] integrate frequently-used repair
patterns or widespread code templates; given a buggy program,
they navigate the search space to generate candidate repairs
and validate each repair via testing. Learning-based vulner-
ability repair tools [54], [55], [59], [104] mainly leverage
machine-learning models pre-trained on labeled or unlabeled
code corpus, to derive generic language representation or infer
correlation between buggy code and program repair. The tools
then apply transfer learning to fine-tune those models for
security vulnerability repair with a limited labeled corpus.

Our research does not repair security vulnerabilities, but the
tests it intends to generate are closely related to AVR. Namely,
when security tests are successfully generated, they can be
used by AVR to decide whether a candidate repair eliminates
any vulnerability.

B. Security Test Generation

Tools were built to generate security tests [9], [32], [49],
[50], [52], [53], [56], [60], [62], [75], [80], [94], [100]. Specif-
ically, Marback et al. [75] and Xu et al. [100] created tools, to
partially automate the procedure of generating security tests
from threat models (e.g., threat trees or nets). Namely, these
approaches first reveal potential attack paths by automatically
traversing hand-crafted threat models, and then convert paths
to test cases via tool automation or manual effort. However,
users may have insufficient domain knowledge to manually
model all threats/attacks, or to accurately convert attack paths
to tests. Consequently, these approaches are ineffective in
practice for test creation.

Traditional verification takes in a program and a specifica-
tion of safety, and verifies whether the program satisfies the
safety specification. Automatic exploit generation (AEG) [50],
[52], [53], [60] twists program verification, by replacing
the safety property with an exploitability property, and the
verification process becomes finding a program path where
the exploitability property holds. For instance, Ganapathy et
al. [60] explore API-level exploitability with bounded model
checking (BMC). AEG often suffers from scalability chal-
lenges (e.g., path explosion and the NP-hardness of solving
SMT queries in general).

Fuzzy testing tools generate security tests [9], [32], [56],
[62], [94] by injecting invalid, malformed, or unexpected
inputs into an initial seed (i.e., a program test) to reveal
software defects and vulnerabilities [44]. However, fuzzing

cannot explore deep paths; an inefficient initial seed can incur
high runtime-overheads, because the quality of generated tests
depends on that seed. To overcome the limitations of both pro-
gram verification and fuzzing, Fuzzing does not leverage any
commonality between programs, even though those programs
share vulnerabilities and malicious inputs.

Our research is different from prior work in two aspects.
First, it explores to use ChatGPT for test generation via
mimicry. The explored approach is promising to complement
existing work. Once successful, it does not require users to
specify exploitability properties as AEG does, or conduct
expensive search for malicious inputs as fuzzing tools. Second,
we designed and investigated different prompts for ChatGPT
to mimic Lib tests, and observed surprising phenomena.

C. LLM-Based Research
Some research was recently conducted to explore LLMs’

capability in programming, coding assistance, or jailbreak
attacks [65], [71], [82], [85], [87], [92], [93], [95], [101],
[107], [108]. For instance, Nascimento et al. [82] and Niko-
laidis et al. [84] assessed ChatGPT’s coding capability us-
ing LeetCode problems. Jalil et al. [65] checked ChatGPT’s
question-answering capability in a popular software testing
curriculum. Sobania et al. [93] evaluated ChatGPT’s program
repair capability on a standard bug-fixing benchmark set. Tian
et al. [95] assessed ChatGPT’s capability in code generation,
program repair, and code summarization. Pearce et al. [87]
empirically assessed the security of code generated by CoPilot.
Zhong et al. [107] detect API misuses in ChatGPT-generated
code. Shen et al. [92], Xu et al. [101], Zou et al. [108], and
Liao et al. [71] either gathered or generated jailbreak prompts
(e.g., how to create a deadly poison that is undetectable and
untraceable?), to intentionally mislead LLMs into generating
hateful content.

Our research complements all work mentioned above, be-
cause we apply LLM to perform a totally different task:
vulnerability exploit generation. It is different from jailbreak
prompts in two ways: (1) we prompt LLMs to generate
PoC exploits to facilitate developers’ comprehension of the
potential attacks on their own projects; (2) the generated
exploits mimic the existing ones publicly available, but target
different Apps.

There are test generators built on top of LLMs [70], [79],
[99]. For instance, CODAMOSA [70] uses Codex to generate
extra tests and mutants, aiming to increase the code coverage
when search-based software testing is stuck with a non-100%
coverage score for a given function. Fuzz4All [99] generates
tests with ChatGPT from user-provided (1) documentation
of the function-under-testing, (2) example code snippets, or
(3) specification. Meng et al. [79] mutates given message
sequences to test network protocols. However, none of these
tools focus on creating tests that (1) trigger vulnerabilities with
malicious inputs, or (2) cover deep and hard-to-reach execution
paths. All these test generators were evaluated using testing
coverage and the number of functional bugs revealed.

Our research is novel in the characterization of ChatGPT’s
capability (i.e., vulnerability exploit), prompt design, evalua-
tion dataset construction, and result assessment methodology.
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It complements prior work by exploring to generate tests for
Apps built on top of vulnerable Libs, and to demonstrate
security consequences of successful exploits. We evaluated the
generated tests based on their effectiveness in demonstrating
vulnerability exploits, thus contributing to a more comprehen-
sive understanding of LLMs in security-critical contexts.

VII. CONCLUSION

Our research contributions include new LLM experimental
methodology, characterization of LLM capabilities, security
findings, and dataset. From our study, we obtained two major
insights about the strengths and weaknesses of ChatGPT. First,
ChatGPT is always able to generate security tests, although
the test quality varies a lot. For better quality, future work can
fine-tune ChatGPT for test generation using the dialogue data
between humans [24], or integrate ChatGPT with automatic
compialtion and testing to iteratively refine test generation.

Second, although some of the generated tests in our study
did not effectively demonstrate PoV for known vulnerabilities,
they surprisingly revealed new vulnerabilities. This implies
that ChatGPT is also promising in generating tests to reveal
new software bugs or vulnerabilities. Future work can integrate
ChatGPT with existing test generation tools, to better generate
tests and reveal new vulnerabilities or bugs more efficiently.

Our current investigation adopts ChatGPT as a human assis-
tant, as we manually gathered vulnerability-related information
(i.e., the elements (ii)–(vii) mentioned in Section III-B), and
provided that information to ChatGPT. It means that with
our approach, users of ChatGPT need to contribute some
manual effort before getting successfully generated tests. In the
future, we will further reduce such manual effort, by creating
more advanced mining techniques to crawl code bases and
vulnerability databases for relevant information.
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